The Growth Rates of Intermediate Phases in Co/Si Diffusion Couples: Bulk Versus Thin-Film Studies

1989 ◽  
Vol 148 ◽  
Author(s):  
C. H. Jan ◽  
J. C. Lin ◽  
Y. A. Chang

ABSTRACTBulk diffusion couples of Co/Si were annealed at 800, 900, 1000, 1050 and 1100°C for periods ranging from 24 hours to one month. Growth rates of the intermediate phases, Co2Si, CoSi and CoSi2, as well as the composition profiles across the couples were determined by optical microscopy and electron probe microanalysis (EPMA). Using the solution to the multiphase binary diffusion equations and the experimental data, the interdiffusion coefficients for Co2Si, CoSi and CoSi2 are obtained as a function of temperature. The activation energies obtained are 140, 160 and 190 KJ/mole for Co2Si, CoSi and CoSi2, respectively. The generally small interdiffusion coefficient of CoSi2 and its high activation energy cause the growth rate of CoSi2 to be extremely small at low temperatures.The interdiffusion coefficients for Co2Si, CoSi and CoSi2 at 545°C are obtained by extrapolation of the high-temperatures data. Using these data and solving numerically the diffusion equations with the appropriate boundary conditions, the growth of Co2Si, CoSi and CoSi2 is calculated as a function of time. The calculated results are in good agreement with the experimental data reported in the literature. This study demonstrates clearly that the initial absence of the CoSi2 phase is due to diffusion-controlled rather than nucleation-controlled kinetics. This phenomenon may be quite common in many thin-fiflm metal/Si couples.

10.30544/308 ◽  
2017 ◽  
Vol 23 (3) ◽  
pp. 197-211 ◽  
Author(s):  
Yuanrong Liu ◽  
Weimin Chen ◽  
Jing Zhong ◽  
Ming Chen ◽  
Lijun Zhang

The previously developed numerical inverse method was applied to determine the composition-dependent interdiffusion coefficients in single-phase finite diffusion couples. The numerical inverse method was first validated in a fictitious binary finite diffusion couple by pre-assuming four standard sets of interdiffusion coefficients. After that, the numerical inverse method was then adopted in a ternary Al-Cu-Ni finite diffusion couple. Based on the measured composition profiles, the ternary interdiffusion coefficients along the entire diffusion path of the target ternary diffusion couple were obtained by using the numerical inverse approach. The comprehensive comparisons between the computations and the experiments indicate that the numerical inverse method is also applicable to high-throughput determination of the composition-dependent interdiffusion coefficients in finite diffusion couples.


2017 ◽  
Vol 53 (3) ◽  
pp. 255-262 ◽  
Author(s):  
Y. Liu ◽  
D. Liu ◽  
Y. Du ◽  
S. Liu ◽  
D. Kuang ◽  
...  

Employing six groups of bulk diffusion couples together with electron probe microanalysis technique, the compositiondependences of ternary interdiffusion coefficients in Cu-rich fcc Cu-Ni-Sn alloys at 1073 K were determined via the Whittle and Green method. Different fitting functions applied to the measured concentration profiles are utilized to extract the interdiffusion coefficients of fcc Cu-Ni-Sn alloys. The errors for the obtained interdiffusivities are evaluated by a scientific method considering the error propagation. The calculated diffusion coefficients using the Boltzmann and additive Boltzmann functions are found to be with reasonable errors and show a general agreement with those using other fitting functions. Based on the Boltzmann and additive Boltzmann functions, the interdiffusivities in Cu-rich fcc Cu-Ni-Sn alloys at 1073 K are obtained and validated by thermodynamic constraints. The Boltzmann and additive Boltzmann functions are recommended to be used for the fitting of measured concentration profiles in other ternary systems for the sake of extracting ternary diffusivities.


1995 ◽  
Vol 10 (5) ◽  
pp. 1134-1145 ◽  
Author(s):  
T. Barge ◽  
P. Gas ◽  
F.M. d'Heurle

The solid state reaction between Co and Si has been studied in bulk diffusion couples between 850 and 1100 °C. At the scale of the observations made, the three phases Co2Si, CoSi, and CoSi2 are found to grow simultaneously, according to diffusion controlled kinetics. The results are analyzed in term of the Nernst-Einstein equation that directly relates diffusion fluxes to the free energy changes driving the formation. The growth rates obtained for CoSi2 at high temperatures, in the present bulk samples, are compared with those determined by others in thin films, at much lower temperatures. The comparison requires that attention should be paid to two factors. The first one is that the laws of growth are slightly different for a phase growing simultaneously with two other ones (bulk) and one phase growing alone (thin films). The second factor is the grain size of the various samples, which varies with the temperature of reaction. Once this is done, excellent agreement is obtained between the two sets of measurements. Moreover it is shown that knowing the grain size, it is possible to calculate quite accurately the growth rate from the respective isotope diffusion coefficients both for lattice and grain boundaries of Co and Si in CoSi2.


1988 ◽  
Vol 3 (1) ◽  
pp. 148-163 ◽  
Author(s):  
J. -C. Lin ◽  
K. -C. Hsieh ◽  
K. J. Schulz ◽  
Y. A. Chang

Reactions between Pd and GaAs have been studied using bulk-diffusion couples of Pd (∼0.6 mm thick) /GaAs and thin-film Pd (50 and 160 nm)/GaAs samples. The sequence of phase formation at 600°C between bulk Pd and GaAs was established. Initial formation of the solution phase μ and the ternary phase T does not represent the stable configuration. The stable configuration is GaAs |∊|Λ|γ|ν|Pd and is termed the diffusion path between GaAs and Pd. The sequence of phase formation for the bulk-diffusion couples is similar at 500°C. Phase formation for the thin-film Pd/GaAs specimens was studied at 180,220,250,300,350,400,450,600, and 1000°C for various annealing times. The sequence of phase formation obtained from the thin-film experiments is rationalized readily from the known ternary phase equilibria of Ga–Pd–As and the results from the bulk-diffusion couples of Pd/GaAs. The thin-film results reported in the literature are likewise rationalized. The diffusion path concept provides a useful guide in understanding the phase formation in Pd–GaAs interface or any other M-GaAs interface. This information is important in designing a uniform, stable contact for the metallization of GaAs.


2010 ◽  
Vol 297-301 ◽  
pp. 384-389 ◽  
Author(s):  
Haruhiko Fukaya ◽  
Md. Moniruzzaman ◽  
Yoshinori Murata ◽  
Masahiko Morinaga ◽  
Toshiyuki Koyama ◽  
...  

Interdiffusion coefficients of Al replacing elements in Ni-Al-X (X=Ti, V and Nb) were estimated by a series of experiments using diffusion couples of Al rich pseudo-binary systems at three different temperatures of 1423, 1473 and 1523K. In order to obtain interdiffusion coefficients of the pseudo-binary systems, the experimental data was analyzed by the Sauer and Freise method, and also impurity diffusion coefficients of Ti, V and Nb in Ni3Al were estimated by applying the Darken-Manning equation. The magnitude of interdiffusion coefficient decreased in order of V, Ti and Nb at all three temperatures. Impurity diffusion coefficients were described by the expressions: , , . The activation enthalpies obtained from the experimental data confirmed the retardation of Ti, V and Nb diffusion in Ni3Al by the anti-site diffusion mechanism. These results are consistent with our previous work on diffusion of Re and Ru in Ni3Al .


1993 ◽  
Vol 73 (3) ◽  
pp. 1168-1179 ◽  
Author(s):  
Chia‐Hong Jan ◽  
Chia‐Ping Chen ◽  
Y. Austin Chang

2021 ◽  
Vol 29 ◽  
pp. 179-203
Author(s):  
Irina V. Belova ◽  
Mohammad Afikuzzaman ◽  
Graeme E. Murch

A novel study of analysis interdiffusion in multicomponent alloys is investigated by means of closed form solutions and numerical simulations. Quaternary as well as selected CoCrFeMnNi (HEAs) quinary metallic systems are analysed using one, two and three diffusion couples with the full set of interdiffusion coefficients being calculated. A custom written Matlab fitting program (MFP) is used as the main tool for the simultaneous fitting into multiple composition profiles in both systems. The retrieved interdiffusion matrices are obtained using a newly developed approach that is interlinked with composition vectors, eigenvalues and eigenvector. On average, it can be concluded that the accuracy of the obtained matrices steadily improves with the increase of the number of couples used in the analysis.


2019 ◽  
Vol 22 ◽  
pp. 94-108
Author(s):  
Mohammad Afikuzzaman ◽  
Irina V. Belova ◽  
Graeme E. Murch

High entropy alloys (HEAs) are composed of five or more principal elements with equal (or nearly equal) compositions. In this paper, interdiffusion phenomenon in the HEAs is investigated. Two composition dependent (as well as composition independent) interdiffusion matrices have been used for detailed studying of the diffusion behaviour in CoCrFeMnNi HEAs. These matrices are calculated according to the Darken and Manning formalisms and are used in combination with the explicit finite difference method (EFDM) to obtain interdiffusion profiles. First, the interdiffusion profiles are calculated for the case of the terminal binary diffusion couple. A significant difference in the composition profiles is found between predictions according to the Darken and Manning formalisms. Next, the interdiffusion problem in the 5-component alloy is addressed numerically by considering the interdiffusion coefficients as constant, independent of composition, in CoCrFeMnNi alloys for several diffusion couples (mainly quasi-binary and quasi-ternary). The simulated composition profiles are found to be in a very good agreement with the available experimental results [1, 2]. It should be pointed out that the independence on composition of the interdiffusion matrix should be used for diffusion couples under two conditions: relatively small changes in composition, and the non-zero/non-dilute terminal compositions. The composition dependent interdiffusion matrix should be used in the diffusion couple if the composition differences are large and/or zero/dilute terminal compositions. In this paper, the Darken and Manning formalisms are used for modelling the composition dependent interdiffusion matrices. The purpose of this modelling is to systematically investigate interdiffusion in CoCrFeMnNi alloys in diffusion couples with substantial changes in composition. The main application of the present research is in the prediction of possible interdiffusion profiles in the framework of the random alloy model.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Jing Zhong ◽  
Li Chen ◽  
Lijun Zhang

AbstractNowadays, the urgency for the high-quality interdiffusion coefficients and atomic mobilities with quantified uncertainties in multicomponent/multi-principal element alloys, which are indispensable for comprehensive understanding of the diffusion-controlled processes during their preparation and service periods, is merging as a momentous trending in materials community. However, the traditional exploration approach for database development relies heavily on expertize and labor-intensive computation, and is thus intractable for complex systems. In this paper, we augmented the HitDIC (high-throughput determination of interdiffusion coefficients, https://hitdic.com) software into a computation framework for automatic and efficient extraction of interdiffusion coefficients and development of atomic mobility database directly from large number of experimental composition profiles. Such an efficient framework proceeds in a workflow of automation concerning techniques of data-cleaning, feature engineering, regularization, uncertainty quantification and parallelism, for sake of agilely establishing high-quality kinetic database for target alloy. Demonstration of the developed infrastructures was finally conducted in fcc CoCrFeMnNi high-entropy alloys with a dataset of 170 diffusion couples and 34,000 composition points for verifying their reliability and efficiency. Thorough investigation over the obtained kinetic descriptions indicated that the sluggish diffusion is merely unilateral interpretation over specific composition and temperature ranges affiliated to limited dataset. It is inferred that data-mining over large number of experimental data with the combinatorial infrastructures are superior to reveal extremely complex composition- and temperature-dependent thermal–physical properties.


1987 ◽  
Vol 108 ◽  
Author(s):  
Kevin J. Schulz ◽  
Xiang-Yun Zheng ◽  
Y. Austin Chang

ABSTRACTThe applicability of Nb as a Schottky barrier on GaAs depends to a large extent on the thermal stability of the contacts. In this study, bulk diffusion couple and phase diagram studies in addition to thin film studies were completed to understand the stability of and the reactions at the Nb/GaAs interface. Nb thin films were deposited onto GaAs substrates by dc magnetron sputtering and were annealed in the temperature range 300 to 1000°C. Analysis was done using plan-TEM and XTEM. The Nb/GaAs interface was found to break down into a series of binary compounds above 500°C. Bulk diffusion couples annealed at 600°C were analyzed using an electron microprobe. The stable sequence of phases formed in the couple, i.e., the diffusion path, was determined and was used to rationalize the observed compound formation in the thin film contact system.


Sign in / Sign up

Export Citation Format

Share Document