Electron Beam Induced Nanometre Hole Formation and Surface Modification in Al, Si And MgO

1989 ◽  
Vol 157 ◽  
Author(s):  
Tim J. Bullough ◽  
C. J. Humphreys ◽  
R. W. Devenish

ABSTRACTA wide variety of materials which are normally undamaged when exposed to a lOOkeV electron beam in a conventional transmission electron microscope can be modified on a nanometre scale by the high current density electron probe in a dedicated scanning transmission electron microscope (STEM). A stationary 100keV STEM electron probe can produce holes typically l-5nm diameter through crystalline Al, Si and MgO tens of nanometres in thickness, while a scanned electron beam can smooth surfaces on an atomic scale.In Al the stationary electron probe in the STEM produces a row of facetted voids along the irradiated volume. The voids grow initially inwards from the electron exit surface, with each void typically 4nm in diameter and 12-24nm in length, separated by equal distances from one another. In contrast, continuous holes 1.2-1.6nm diameter form at the electron exit surface of Si when exposed to the focused electron beam. However, these holes form only at specific randomly distributed points separated from one another by 2-4nm over the surface of crystalline specimens of both n- and p-doped <001> and <111> Si.Square cross-section holes with widths of about lnm can be formed by the stationary electron probe in MgO crystals. Rastering the probe over a restricted area of MgO initially results in the rapid development of surface islands and channels which are subsequently removed to leave an atomically smooth surface.

2020 ◽  
Vol 20 (12) ◽  
pp. 7743-7747
Author(s):  
Yan-Hui Chen ◽  
Xue-Qiao Li ◽  
Qing-Song Deng ◽  
Ang Li

A thin, clean pristine Au film created in a transmission electron microscope chamber was tailored by an electron beam. Various kinds of nanopatterns, including hexagonal holes and dumbbell-like patterns, were fabricated by different doses of the electron beam. A high-quality series of in situ images were recorded to explore the irradiation mechanism. The electron-matter collision enabled the electron beam to act as a tweezer to arrange atoms into a specified pattern.


Author(s):  
R. Sinclair ◽  
B.E. Jacobson

INTRODUCTIONThe prospect of performing chemical analysis of thin specimens at any desired level of resolution is particularly appealing to the materials scientist. Commercial TEM-based systems are now available which virtually provide this capability. The purpose of this contribution is to illustrate its application to problems which would have been intractable until recently, pointing out some current limitations.X-RAY ANALYSISIn an attempt to fabricate superconducting materials with high critical currents and temperature, thin Nb3Sn films have been prepared by electron beam vapor deposition [1]. Fine-grain size material is desirable which may be achieved by codeposition with small amounts of Al2O3 . Figure 1 shows the STEM microstructure, with large (∽ 200 Å dia) voids present at the grain boundaries. Higher quality TEM micrographs (e.g. fig. 2) reveal the presence of small voids within the grains which are absent in pure Nb3Sn prepared under identical conditions. The X-ray spectrum from large (∽ lμ dia) or small (∽100 Ǻ dia) areas within the grains indicates only small amounts of A1 (fig.3).


Author(s):  
P. Fraundorf ◽  
J. Tentschert

Since the discovery of their etchability in the early 1960‘s, nuclear particle tracks in insulators have had a diverse and exciting history of application to problems ranging from the selective filtration of cancer cells from blood to the detection of 244Pu in the early solar system. Their usefulness stems from the fact that they are comprised of a very thin (e.g. 20-40Å) damage core which etches more rapidly than does the bulk material. In fact, because in many insulators tracks are subject to radiolysis damage (beam annealing) in the transmission electron microscope, the body of knowledge concerning etched tracks far outweighs that associated with latent (unetched) tracks in the transmission electron microscope.With the development of scanned probe microscopies with lateral resolutions on the near atomic scale, a closer look at the structure of unetched nuclear particle tracks, particularly at their point of interface with solid surfaces, is now warranted and we think possible. The ion explosion spike model of track formation, described loosely, suggests that a burst of ionization along the path of a charged particle in an insulator creates an electrostatically unstable array of adjacent ions which eject one another by Coulomb repulsion from substitutional into interstitial sites. Regardless of the mechanism, the ejection process which acts to displace atoms along the track core seems likely to operate at track entry and exit surfaces, with the added feature of mass loss at those surfaces as well. In other words, we predict pits whose size is comparable to the track core width.


2016 ◽  
Vol 171 ◽  
pp. 8-18 ◽  
Author(s):  
K. Bücker ◽  
M. Picher ◽  
O. Crégut ◽  
T. LaGrange ◽  
B.W. Reed ◽  
...  

2009 ◽  
Vol 24 (8) ◽  
pp. 2638-2643 ◽  
Author(s):  
Kai-Jheng Wang ◽  
Yan-Zuo Tsai ◽  
Jenq-Gong Duh ◽  
Toung-Yi Shih

An Sn-patch formed in Ni(V)-based under bump metallization during reflow and aging. To elucidate the evolution of the Sn-patch, the detailed compositions and microstructure in Sn–Ag–Cu and Ti/Ni(V)/Cu joints were analyzed by a field emission electron probe microanalyzer (EPMA) and transmission electron microscope (TEM), respectively. There existed a concentration redistribution in the Sn-patch, and its microstructure also varied with aging. The Sn-patch consisted of crystalline Ni and an amorphous Sn-rich phase after reflow, whereas V2Sn3 formed with amorphous an Sn-rich phase during aging. A possible formation mechanism of the Sn-patch was proposed.


RSC Advances ◽  
2017 ◽  
Vol 7 (27) ◽  
pp. 16655-16661 ◽  
Author(s):  
Suji Choi ◽  
Jong Hoon Lee ◽  
Min Wook Pin ◽  
Dong Won Jang ◽  
Seong-Gu Hong ◽  
...  

The mechanical properties and fracture behavior of individual InAs nanowires (NWs) were investigated under uniaxial tensile loading in a transmission electron microscope.


Sign in / Sign up

Export Citation Format

Share Document