Microdiffraction from Cleaved Si-Si1-xGex Multilayers

1989 ◽  
Vol 160 ◽  
Author(s):  
W. T. Pike

AbstractUsing the nanometer probe available in the dedicated scanning transmission electron microscope (STEM) local structural information can be obtained from individual layers in [100] grown Si-Si1-xGex multilayer structures. Furthermore the small probe size enables cleaved specimens with their very large wedge angles to be analyzed in cross-section. Diffraction patterns are shown from multilayers of varying periodicity. Analysis of the patterns concentrates on the higher order Laue zone (holz) reflections in the high angle excess ring . The behaviour of the excess holz reflections indicates the transition from a strained layer superiattice to a dislocated structure as the thickness of the layers increases for a given composition.

1997 ◽  
Vol 3 (S2) ◽  
pp. 1171-1172 ◽  
Author(s):  
Ondrej L. Krivanek ◽  
Niklas Dellby ◽  
Andrew J. Spence ◽  
Roger A. Camps ◽  
L. Michael Brown

Aberration correction in electron microscopy is a subject with a 60 year history dating back to the fundamental work of Scherzer. There have been several partial successes, such as Deltrap's spherical aberration (Cs) corrector which nulled Cs over 30 years ago. However, the practical goal of attaining better resolution than the best uncorrected microscope operating at the same voltage remains to be fulfilled. Combining well-known electron-optical principles with stable electronics, versatile computer control, and software able to diagnose and correct aberrations on-line is at last bringing this goal within reach.We are building a quadrupole-octupole Cs corrector with automated aberration diagnosis for a VG HB5 dedicated scanning transmission electron microscope (STEM). A STEM with no spherical aberration will produce a smaller probe size with a given beam current than an uncorrected STEM, and a larger beam current in a given size probe.


1984 ◽  
Vol 41 ◽  
Author(s):  
John B. Vander Sande ◽  
Anthony J. Garratt-Reed

AbstractThis paper discusses the application of the scanning transmission electron microscope (STEM) to the detection of segregation at interfaces via the monitoring of X-rays generated when the incident electrons interact with the segregant. Issues of spatial resolution and minimum detectable concentration are discussed. Specific examples, emphasizing the importance of probe size, sample thickness, and sample orientation, are presented.


2010 ◽  
Vol 44 (1) ◽  
pp. 111-121 ◽  
Author(s):  
K. Z. Baba-Kishi

Electron diffraction patterns recorded using a scanning transmission electron microscope (STEM) from PbMg1/3Nb2/3O3(PMN) crystallites and PbZn1/3Nb2/3O3(PZN) crystals show weak and systematic continuous diffuse streaking along the 〈110〉 directions. Detailed high-angle annular dark-field (HAADF) images recordedviaan aberration-corrected STEM show that theB-site cations in PMN and PZN undergo correlated and long-range displacements towards the Pb2+ions on the (110) planes. The planarB-site displacement measured from the centres of the octahedra is about 0.3–0.5 Å in PMN and about 0.20–0.4 Å in PZN. In the HAADF images of the PMN crystallites and PZN crystals studied, there is insufficient evidence for systematic long-range planar displacements of the Pb2+ions. The observed Pb2+ion displacements in PMN and PZN appear randomly distributed, mostly displaced along 〈110〉 towards theB-site columns. There is also evidence of possible stress-related distortion in certain unit cells of PMN. In the relaxors studied, two distinct types of displacements were observed: one is the long-range planarB-site spatial displacement on the (110) planes, correlated with the Pb2+ions, possibly resulting in the observed diffuse streaking; the other is short-range Pb2+ion displacement on the (110) planes. The observed displacement status indicates a mutual attraction between the Pb ions and theB-site cations in which theBsites undergo the largest spatial displacements towards the Pb ions along 〈110〉.


2001 ◽  
Vol 7 (S2) ◽  
pp. 896-897
Author(s):  
O.L. Krivanek ◽  
N. Dellby ◽  
P.D. Nellist ◽  
P.E. Batson ◽  
A.R. Lupini

Surprising as it may seem, aberration correction for the scanning transmission electron microscope (STEM) is now a practical proposition. The first-ever commercial spherical aberration corrector for a STEM was delivered by Nion to IBM Research Center in June 2000, and other deliveries have taken place since or are imminent. At the same time, the development of corrector hardware and software is still proceeding at full speed, and our understanding of what are the most important factors for the successful operation of a corrector is deepening continuously.Fig. 1 shows two high-angle dark field (HADF) images of [110] Si obtained with the IBM VG HB501 STEM operating at 120 kV, about 2 weeks after we fitted a quadrupole-octupole corrector into it. Fig. 1(a) shows the best HADF image that could be obtained with the corrector's quadrupoles on but its octupoles off. Sample structures were captured down to about 2.5 Å detail, easily possible in a STEM with a high resolution objective lens with a spherical aberration coefficient (Cs) of 1.3 mm. Fig. 1(b) shows a HADF image obtained after the Cs-correcting octupoles were turned on and the corrector tuned up. The resolution has now improved to 1.36 Å. This is sufficient to resolve the correct separation of the closely-spaced Si columns.


Author(s):  
D.D. Perovic ◽  
J.H. Paterson

With the development of crystal growth techniques such as molecular beam epitaxy (MBE), it is now possible to fabricate modulation-doped superlattices consisting of alternating ultrathin layers of n-and/or p-type material abruptly separated by undoped material. At sufficiently high dopant concentrations these abrupt layers may be imaged in cross section by electron microscopy. Pennycook et al. and Treacy et al. have used high angle annular dark-field (HAAD) imaging in the scanning transmission electron microscope (STEM) to image low levels of dopants (∼1 at. %) in semiconductors. This work is concerned with imaging boron and arsenic doped layers in silicon at levels « 1 at.%.Fig. 1 shows a HAAD image of a B-Si superlattice at the <110> zone-axis orientation taken at 100 kV using a VG HB501UX STEM. The bright vertical layers are the B-doped regions, containing ∼4 x 1020 B/cm3. The horizontal lines are due to beam instability while the image was recorded. Fig.2 shows a line scan across the same superlattice, recorded by scanning the beam across the specimen in a direction perpendicular to the layers.


Author(s):  
Ernest L. Hall ◽  
John B. Vander Sande

The scanning transmission electron microscope has afforded a dramatic improvement in the spatial resolution of X-ray microanalysis of thin specimens, allowing the investigation of extremely localized compositional variations in materials systems. In this paper, the results of high resolution composition profile analysis in several materials are presented. The materials were analyzed in a 100 kV field emission STEM manufactured by VG Microscopes, Ltd., and fitted with an energy dispersive X-ray spectrometer. The specimens were held in a double-tilt graphite cartridge which allowed X-ray detection in the tilt range 0°-20° about each axis. The vacuum in the specimen chamber was ∿ 2 x 10-9 torr during analysis. Electron probe spot sizes of 5-10 Å were used, corresponding to probe currents in the range of 10-10-10-9 amps.For a given specimen composition, the spatial resolution of X-ray microanalysis in thin specimens is a function of probe size, accelerating voltage, specimen atomic number, and thickness.


1994 ◽  
Vol 332 ◽  
Author(s):  
N. D. Browning ◽  
M. F. Chisholm ◽  
S. J. Pennycook

ABSTRACTIn a 100 kV VG HB501 UX dedicated scanning transmission electron microscope, the 2.2 Å probe size allows the atomic structure to be observed with compositional sensitivity in the Z-contrast image. As this image requires only the high-angle scattering, it can be used to position the probe for simultaneous electron energy loss spectroscopy. Energy loss signals in the core loss region of the spectrum (>300 eV) are sufficiently localized that the spatial resolution is limited only by the probe. The electronic structure of the material at the interface can thus be determined on the same scale as the changes in composition, and atomic structure can be observed in the image, allowing the structure and chemical bonding at interfaces and boundaries to be characterized at the atomic level.


Sign in / Sign up

Export Citation Format

Share Document