Epitaxial growth of Cr [001] on LiF [001]

1989 ◽  
Vol 160 ◽  
Author(s):  
J. Mattson ◽  
M. B. Brodsky ◽  
J. Ketterson ◽  
H. You

AbstractWe report X-ray diffraction and in-situ RHEED( Reflection High Energy Electron Diffraction) measurements on Cr thin films deposited on LiF[001] single crystal substrates for thicknesses up to 300 nm and for substrate temperatures from 30 to 450°C. From these measurements we determine the range of deposition conditions necessary for epitaxial growth and the stress in these films as a function of film thickness.

1993 ◽  
Vol 312 ◽  
Author(s):  
A. H. Bensaoula ◽  
A. Freundlich ◽  
A. Bensaoula ◽  
V. Rossignol

AbstractPhosphorus exposed GaAs (100) surfaces during a Chemical Beam Epitaxy growth process are studied using in-situ Reflection High Energy Electron Diffraction and ex-situ High Resolution X-ray Diffraction. It is shown that the phosphorus exposure of a GaAs (100) surface in the 500 – 580 °C temperature range results in the formation of one GaP monolayer.


2013 ◽  
Vol 1501 ◽  
Author(s):  
Tetsuhiko Miyadera ◽  
Hiroki Mitsuta ◽  
Noboru Ohashi ◽  
Tetsuya Taima ◽  
Ying Zhou ◽  
...  

ABSTRACTWe have developed a method for epitaxial growth of C60 thin films on tetracene single crystals. The crystal orientation of the C60 film was examined by reflection high energy electron diffraction (RHEED) and X-ray diffraction (XRD). In-situ observation by RHEED revealed that the C60 crystallizes from the very initial stage of the deposition (0.1 nm). A 6-fold symmetric pattern, which was observed in a XRD polar scan, can be taken as direct evidence for the epitaxial growth of C60 commensurate with the tetracene (001) surface lattice.


2019 ◽  
Vol 3 (9) ◽  
pp. 55-63 ◽  
Author(s):  
Antonello Tebano ◽  
Carmela Aruta ◽  
Pier Gianni Medaglia ◽  
Giuseppe Balestrino ◽  
Norberto G. Boggio ◽  
...  

2000 ◽  
Vol 639 ◽  
Author(s):  
Yoshiki Saito ◽  
Nobuaki Teraguchi ◽  
Akira Suzuki ◽  
Tomohiro Yamaguchi ◽  
Tsutomu Araki ◽  
...  

ABSTRACTInN films with excellent surface morphology were grown by controlled the V/III ratio of InN epitaxal layer. It was found they were single crystal of InN films with wurtzite structure by X-ray diffraction (XRD) measurement and reflection high-energy electron diffraction (RHEED) observation. Hall mobility as high as 760 cm2/Vs was achieved for InN film grown at 550°C with 240 W of RF plasma power with a carrier density of 3.0×1019 cm−3 at room temperature. To our knowledge, this electron mobility is the highest value ever reported.


Sign in / Sign up

Export Citation Format

Share Document