The Role of Crystallization of an Intergranular Glassy Phase in Determining Grain Boundary Residual Stresses in Debased Aluminas

1989 ◽  
Vol 170 ◽  
Author(s):  
Nitin P. Padture ◽  
Helen M. Chan ◽  
Brian R. Lawn ◽  
Michael J. Readey

AbstractThe influence of microstructure on the crack resistance (R-curve) behavior of a commercial debased alumina containing large amounts of glassy phase (28 vol %) has been studied using the Indentation-Strength test. The effect of two microstructural variables, viz. grain size and the nature of the intergranular second phase (glassy or crystalline) has been evaluated. Crystallization of the intergranular glass was carried out in order to generate residual stresses at the grain boundaries, which have been shown to enhance R-curve behavior in ceramic materials. Enhancement of the R-curve behavior was observed with the increase in grain size. However, no effect of the nature of the intergranular second phase on the R-curve behavior, in small and large grain materials, was observed. The results from characterization of these materials using various analytical techniques is presented, together with possible explanations for the observed effects.

2011 ◽  
Vol 216 ◽  
pp. 563-567
Author(s):  
Tian Guo Wang ◽  
Qun Qin ◽  
Dong Jian Zhou

TiO2-based capacitor-varistor ceramics doped with Er2O3 were prepared and the microstructures and nonlinear electrical properties were investigated. The results show that there exist second phase Er2TiO3 on the surface of TiO2 grains. The grain size was found to decrease with increasing Er2O3 content. The addition of rare earth oxide Er2O3 leads to increase the nonlinear coefficient and the breakdown voltage. It was found that the nonlinear coefficient presents a peak of α = 4.5 for the sample doped with 1.1 mol% Er2O3, which isconsistent with the highest grain boundary in the composition. In order to illustrate the role of grain boundary barriers for TiO2-Ta2O5-Er2O3 varistors, a grian boundary defect barrier model was introduced.


2020 ◽  
Vol 57 (10) ◽  
pp. 1508-1517
Author(s):  
L.A. Torres-Cruz ◽  
J.C. Santamarina

The probability of failure of tailing dams and associated risks demand improvements in engineering practice. The critical state line provides a robust framework for the characterization of mine tailings. New experimental data for nonplastic platinum tailings and a large database for tailings and nonplastic soils (grain size between 2 and 500 μm) show that the critical state parameters for nonplastic tailings follow the same trends as nonplastic soils as a function of particle-scale characteristics and extreme void ratios. Critical state lines determined for extreme tailings gradations underestimate the range of critical state parameters that may be encountered in a tailings dam; in fact, mixtures with intermediate fines content exhibit the densest granular packing at critical state. The minimum void ratio emin captures the underlying role of particle shape and grain size distribution on granular packing and emerges as a valuable index property to inform sampling strategies for the assessment of spatial variability. Mineralogy does not significantly affect the intercept Γ100, but it does affect the slope λ. The friction coefficients M of tailings are similar to those of other nonplastic soils; while mineralogy does not have a significant effect on friction, more angular grains lead to higher friction coefficients.


1992 ◽  
Vol 273 ◽  
Author(s):  
A. K. Ghosh ◽  
A. Basu ◽  
H. Kung

ABSTRACTIn an effort to enhance the toughness and creep strength of MoSi2, the role of various metallic and ceramic reinforcements is being examined. In this work, the effects of an oxide, a carbide and a nitride reinforcement on the compression creep behavior of MoSi2 are explored. Variations in the deformability of reinforcements and their relative strength and flaw population appear to influence the creep strength of the composites. Refinements in grain size also improve crack tolerance of the composite during deformation at 1200°C.


Author(s):  
Aman Haque ◽  
Taher Saif

Nanoscale metal films and electrodes are extensively used in today’s micro and nano electronics as well as nano mechanical systems. These metal structures are usually polycrystalline in nature with nano scale grains connected to each other by grain boundaries. The small size offers large grain boundary to volume ratio that is likely to affect the metal properties significantly. Here, we discuss the role of grain size and boundaries in determining the mechanical behavior of metals, such as elasticity and yielding.


1990 ◽  
Vol 196 ◽  
Author(s):  
Yan Ma ◽  
Terence G. Langdon

ABSTRACTIt is well known that cavities are nucleated and grow during the superplastic deformation of many materials. The various theories for cavity growth are examined with special emphasis on the role of growth by diffusion. It is demonstrated that the normal model for the diffusion growth of cavities is inadequate for superplastic materials when the grain boundary lengths are very small. By developing a new model for the growth of an isolated cavity to sizes exceeding the grain size, it is shown that the diffusion process may play a major role in cavity growth under a range of experimental conditions.


1985 ◽  
Vol 60 ◽  
Author(s):  
P.A. Morris ◽  
R.L. Coble

AbstractThe clean room processing, firing and crystal growth techniques required to produce high-purity Al2O3 crystals and bicrystals with [2110] tilt boundaries near low Σ misorientations are described. The chemical analysis requirements for high-purity ceramic materials are discussed. The boundary characteristics of the θ=33.2°, near Σ = 11, misorientation and the applicability of the CSL model to describe the observed facet planes is determined. The periodicity of the dislocations present in the boundary is 21 nm. STEM analysis of the grain boundary region indicates no second phase or detectable impurity concentrations. The importance of gra in boundary structure investigations in high-purity materials and of chemically well-characterized boundaries is discussed.


Author(s):  
Mohammad W. Dewan ◽  
Jiandong Liang ◽  
M. A. Wahab ◽  
Ayman M. Okeil

Heat treatable AA-6061 T651 Aluminum alloys (Al-Mg-Si) have found considerable importance in various structural applications for their high strength to weight ratio and corrosion resistance properties. Weld defects, residual stresses, and microstructural changes are the key factors for the performance reduction as well as failure of welded structures. Tungsten inert gas (TIG/GTAW) welding was carried out on AA-6061 T651 Aluminum Alloy plates using Argon/Helium (50/50) as the shielding gas. Non-destructive phased array ultrasonic testing (PAUT) was applied for the detection and characterization of weld defects and characterization of the mechanical performances. In this study, ultrasonic technique was also used for the evaluation of post-weld residual stresses in welded components. The approach is based on the acoustoelastic effect, in which ultrasonic wave propagation speed is related to the magnitude of stresses present in the materials. To verify the estimated residual stresses by ultrasonic testing, hole-drilling technique was carried out and observed analogous results. The effects of post weld heat treatment (PWHT) on the residual stresses, grain size, micro hardness, and tensile properties were also studied. The grain size and micro hardness were studied through Heyn’s method and Vickers hardness test, respectively. Lower residual stresses were observed in post-weld heat-treated specimens, which also experienced from microstructure and micro hardness studies. The PWHT also resulted enhanced tensile properties for the redistribution of microstructures and residual stresses.


Author(s):  
J. Narayan

We have developed a novel processing technique to fabricate tungsten carbide (WC) nanocomposites with uniform grain size. In this method, pulsed laser deposition of WC in conjunction with a few monolayers of nickel aluminide (NiAl) is used to control the grain size of nanocrystalline composites. The grain size of WC was controlled by the thickness of tungsten carbide and the substrate temperature. The role of NiAl is to ensure the nucleation of tungsten carbide islands, and it is relatively insoluble in WC. Using this approach, we have fabricated nanocomposites of grain sizes ranging from 6 nm to 35 nm. The hardness of the composite increases with the decrease in grain size, following approximately Hall-Petch relationship. Below a critical value, we observed a softening behavior which has been modeled to be related to intragrain deformation or grain boundary shear. The role of NiAl in grain boundary deformation is of particular interest in strengthening and stabilizing against the grain growth of nanocrystalline composites. The new WC-NiAl composite is expected to have superior high-temperature strength compared to conventional microcrystalline WC-Co composites.


Sign in / Sign up

Export Citation Format

Share Document