Bacterial Production of Iron Sulfides

1990 ◽  
Vol 218 ◽  
Author(s):  
Dennis A. Bazylinski

AbstractIron sulfide production by bacteria can be classified as extracellular or intracellular. Extracellular iron sulfide production is mediated by anaerobic, dissimilatory sulfate-reducing bacteria which produce sulfide as a product of their respiration. Released sulfide reacts with iron (and other metals) in the extracellular environment producing a variety of iron sulfide minerals including “amorphous iron sulfide”, mackinawite, greigite, pyrrhotite, marcasite, and pyrite. The type of minerals formed is dependent upon pH, Eh, and other physical and chemical factors. Extracellular production of these minerals are examples of biologically-induced mineralization in which mineral formation occurs from chemical and/or physical changes in the surrounding environment by the organism.

2016 ◽  
Vol 66 (2) ◽  
pp. 227-256 ◽  
Author(s):  
Christopher V. Jeans ◽  
Alexandra V. Turchyn ◽  
Xu-Fang Hu

AbstractThe relationship between the development of iron sulfide and barite nodules in the Cenomanian Chalk of England and the presence of a red hematitic pigment has been investigated using sulfur isotopes. In southern England where red and pink chalks are absent, iron sulfide nodules are widespread. Two typical large iron sulfide nodules exhibit δ34S ranging from −48.6‰ at their core to −32.6‰ at their outer margins. In eastern England, where red and pink chalks occur in three main bands, there is an antipathetic relationship between the coloured chalks and the occurrence of iron sulfide or barite nodules. Here iron sulfide, or its oxidised remnants, are restricted to two situations: (1) in association with hard grounds that developed originally in chalks that contained the hematite pigment or its postulated precursor FeOH3, or (2) in regional sulfidization zones that cut across the stratigraphy. In the Cenomanian Chalk exposed in the cliffs at Speeton, Yorkshire, pyrite and marcasite (both iron sulfide) nodules range in δ34S from −34.7‰ to +40.0‰. In the lower part of the section δ34S vary from −34.8‰ to +7.8‰, a single barite nodule has δ34S between +26.9‰ and +29.9‰. In the middle part of the section δ34S ranges from +23.8‰ to +40.0‰. In the sulfidization zones that cut across the Cenomanian Chalk of Lincolnshire the iron sulfide nodules are typically heavily weathered but these may contain patches of unoxidised pyrite. In these zones, δ34S ranges from −32.9‰ to +7.9‰. The cross-cutting zones of sulfidization in eastern England are linked to three basement faults – the Flamborough Head Fault Zone, the Caistor Fault and the postulated Wash Line of Jeans (1980) – that have affected the deposition of the Chalk. It is argued that these faults have been both the conduits by which allochthonous fluids – rich in hydrogen sulfide/sulfate, hydrocarbons and possibly charged with sulfate-reducing bacteria – have penetrated the Cenomanian Chalk as the result of movement during the Late Cretaceous or Cenozoic. These invasive fluids are associated with (1) the reduction of the red hematite pigment or its praecursor, (2) the subsequent development of both iron sulfides and barite, and (3) the loss of overpressure in the Cenomanian Chalk and its late diagenetic hardening by anoxic cementation. Evidence is reviewed for the origin of the red hematite pigment of the coloured chalks and for the iron involved in the development of iron sulfides, a hydrothermal or volcanogenic origin is favoured.


2016 ◽  
Vol 14 (3) ◽  
pp. 557-561
Author(s):  
Nguyễn Thị Yên ◽  
Kiều Thị Quỳnh Hoa

Lead contaminated wastewater negatively impacts to living organisms as well as humans. In recent years, a highly promising biological process using the anaerobic production of sulfide ions by sulfate-reducing bacteria has presented itself as an alternative option for the removal of lead. This process is based on microbial utilization of electron donors, such as organic compounds (carbon sources), and sulfate as the terminal electron acceptor for sulfide production. The biogenic hydrogen sulfide reacts with dissolved heavy metals to form insoluble metal sulfide precipitates Removal of lead by an enriched consortium of sulfate-reducing bacteria (DM10) was evaluated sulfate reduction, sulfide production and lead precipitation. Four parallel anaerobic continuous stirred tank reactors (CSTR, V = 2L) (referred as R1 - R4) were fed with synthetic wastewater containing Pb2+ in the concentrations of 0, 100, 150 and 200 mg L-1 of lead and operated with a hydraulic retention time of 5 days for 40 days. The loading rates of each metal in R1- R4 were 0, 20, 30 and 40 mg L-1 d-1, respectively. The results showed that there was no inhibition of SRB growth and that lead removal efficiencies of 99-100% for Pb2+ were achieved in R2 (100 mg L-1) and R3 (150 mg L-1) throughout the experiment. For the highest lead concentration of  200 mg L-1, a decrease in efficiency of removal (from 100 to 96%) was observed at the end of the experiment. The obtained result of this study might help for a better control operation and performance improvements of reactors.


2011 ◽  
Vol 368-373 ◽  
pp. 42-47
Author(s):  
Fu Shao Li ◽  
Mao Zhong An ◽  
Dong Xia Duan

Corrosion behaviors of low nickel alloy high strength steel (LNAHSS) was studied by electrochemical impedance spectroscopy and scanning electron microscopy when the coupons of LNAHSS were exposed to the seawater culture media. As the results, LNAHSS was uniformly corroded in the fresh sterilized culture medium in a mode of active dissolution; in the culture medium with sulfate-reducing bacteria (SRB), LNAHSS was protected by the iron sulfides layer to some extent in the early stage of exposure, but severely localized corrosion subsequently occurred resulting from the localized breakdown of iron sulfides layer. So, in risks estimation, special precautions should be taken when LNAHSS serves in the environments containing SRB as the localized area can become the tress raiser.


2013 ◽  
Vol 825 ◽  
pp. 540-543
Author(s):  
Mariana Moreira ◽  
Silvana de Queiroz Silva ◽  
Mônica Cristina Teixeira

The objective of this work was to identify one bacterial consortium adapted to the cultivation in the presence of trivalent arsenic (AsIII). Samples were cultured in flasks containing modified Postgate C liquid medium (selective for sulfate-reducing bacteria, SRB). Six different As concentrations were used: 0.5, 1.0, 2.0, 4.0, 8.0 and 16 mg l-1. The growth of sulfate reducing microorganisms was indirectly observed by the formation of an iron sulfide black precipitate and also by the Eh measures.100 ml aliquots of cultured media were centrifuged and stored at-20°C for DNA extraction by phenol/chloroform method. Universal primers 968F-GC 1392R (Bacteria domain) were used for 16S ribosomal DNA amplification. Microbial diversity was evaluated by denaturing gradient gel electrophoresis (DGGE). After DGGE analysis 7 different bands were selected, cut, sequenced and analyzed using the Ribosomal Database Project Release. Consortium microorganisms identified were: Pantoea agglomerans, Enterobacter sp, Citrobacter sp, Cupriavidusmetallidurans, Ralstonia sp, Burkholderia cepacia and Bacillus sp. Thus the microbial consortium here identified is a good candidate for bioremediation of arsenic contaminated areas and effluents.


Author(s):  
Teyyub İsmayılov, Sevinj Suleymanova Teyyub İsmayılov, Sevinj Suleymanova

Complex compounds were synthesized by mixing natural petroleum acids with hexamethylene diamine at a ratio of 1:1 and 2:1 at room temperature, IR spectra of the complexes were studied and confirmed, physical and chemical parameters were determined, solutions were prepared and bactericidal properties were studied. The bactericidal effect of a complex compound of natural petroleum acids synthesized with hexamethylenediamine in a ratio of 1: 1 mol at a concentration of 250 mg / l is 95%, a complex combination obtained at a concentration of 500 mg / l and 1000 mg / l is 100%, bactericidal at a concentration of 2: 1 mol at a concentration of 250 mg / l The effect was 98%, 100% at 500 and 1000 mg / l concentrations. According to the results, complex compounds of natural petroleum acids synthesized with hexamethylenediamine can be used to prevent the growth of bacteria. Keywords: natural petroleum acid, hexamethylenediamine, sulfate-reducing bacteria, complex compounds, bactericidal properties.


1997 ◽  
Vol 36 (1) ◽  
pp. 295-302 ◽  
Author(s):  
Zbigniew Lewandowski ◽  
Wayne Dickinson ◽  
Whonchee Lee

Two mechanisms of microbially influenced corrosion (MIC) are discussed and compared: corrosion modified by the presence of (1) sulfate-reducing bacteria (SRB) and (2) manganese-oxidizing bacteria (MOB). It is demonstrated that the nature of MIC in both cases depends on the nature of inorganic materials precipitated at the metal surface, iron sulfides and manganese oxides. Those materials are electrochemically active and, therefore, modify the electrochemical processes naturally occurring at the metal-solution interface. Some of these modifications may lead to accelerated corrosion.


2020 ◽  
Vol 22 (40) ◽  
pp. 23258-23267
Author(s):  
Miroslav Kolos ◽  
Daniel Tunega ◽  
František Karlický

The adsorption properties of two iron sulfide minerals (mackinawite and pyrite) and zero-valent iron with respect to two small polar molecules (H2O and H2S) and trichloroethylene (TCE) were modeled.


Geophysics ◽  
1991 ◽  
Vol 56 (6) ◽  
pp. 748-757 ◽  
Author(s):  
M. B. Goldhaber ◽  
R. L. Reynolds

This paper focuses on the association between concentrations of iron disulfide [Formula: see text] minerals in the shallow subsurface and underlying hydrocarbon accumulations. Such [Formula: see text] concentrations are the result of migration of either [Formula: see text] or organic constituents from the underlying hydrocarbons. The [Formula: see text] from reservoirs is produced inorganically from sulfate in the reservoir rocks at high temperature (>90°C) and migrates to shallower beds to react inorganically with iron to form [Formula: see text]. Organic constituents from reservoirs, in contrast, provide nourishment for sulfate reducing bacteria in shallow relatively cool (<90°C) beds. Sandstone in the Ray Point uranium district in Live Oak County, Texas contains abundant [Formula: see text] which formed both from deep‐seated [Formula: see text] and from [Formula: see text] produced in the shallow subsurface by bacteria that utilized organic materials from depth. Deep petroleum reservoirs were physically connected to near‐surface (<100 m) beds containing epigenetic [Formula: see text] by the Oakville fault. Epigenetic iron sulfide formation occurred in at least four episodes over at least five million years. Evidence from the Ray Point district and elsewhere in Texas illustrates that sulfidization reactions have destroyed magnetic iron‐titanium oxide minerals in the vicinity of major growth faults, resulting in a systematic decrease in magnetic susceptibility and magnitude of remanent magnetization in the vicinity of such faults. Growth faults which tap hydrocarbon deposits may be detectable using aeromagnetic methods.


2015 ◽  
Vol 38 (10) ◽  
pp. 2003-2011 ◽  
Author(s):  
Thi Quynh Hoa Kieu ◽  
Thi Yen Nguyen ◽  
Thi Yen Dang ◽  
Thanh Binh Nguyen ◽  
Thi Nga Vuong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document