Void Growth as a Function of Residual Stress Level in Thin, Narrow Aluminum Lines

1991 ◽  
Vol 226 ◽  
Author(s):  
M.A. Korhonen ◽  
P. Børgesen ◽  
C.A. Paszkiet ◽  
J.K. Lee ◽  
Che-Yu Li

AbstractHigh tensile stresses develop in passivated aluminum line metallizations on silicon substrates after excursion to elevated temperatures. The principal mechanisms to relax these stresses at room temperature are plastic deformation and grain boundary void growth. It is shown that stress relaxation and void growth are intimately connected.

1991 ◽  
Vol 225 ◽  
Author(s):  
M. A. Korhonen ◽  
P. Børgesen ◽  
C. A. Paszkiet ◽  
J. K. Lee ◽  
Che-Yu Li

ABSTRACTHigh tensile stresses develop in passivated aluminum line metallizations on silicon substrates after excursion to elevated temperatures. The principal mechanisms to relax these stresses at room temperature are plastic deformation and grain boundary void growth. It is shown that stress relaxation and void growth are intimately connected.


1991 ◽  
Vol 226 ◽  
Author(s):  
P. Borgesen ◽  
J. K. Lee ◽  
M. A. Korhonen ◽  
C.-Y. Li

AbstractThe stress induced growth of individual voids in passivated Al-lines at room temperature was monitored in-situ without removing the passivation. The kinetics was strongly influenced by variations in line gec.etry, even over distances of many Am, indicating variations in the stress relaxation as well.


2016 ◽  
Vol 725 ◽  
pp. 671-676 ◽  
Author(s):  
Naoko Saito ◽  
Mitsugi Fukahori ◽  
Daisuke Hisano ◽  
Hiroshi Hamasaki ◽  
Fusahito Yoshida

Springback of a high strength steel (HSS) sheet of 980 MPa grade was investigated at elevated temperatures ranging from room temperature to 973 K. From U-and V-bending experiments it was found that springback was decreased with increasing temperature at temperatures of above 573 K. Furthermore, springback was decreased with punch-holding time because of stress relaxation. In this work, the stress relaxation behavior of the steel was experimentally measured. By using an elasto-vicoplasticity model, the stress relaxation was described, and its effect on the springback of sheet metals in warm forming was discussed theoretically.


1989 ◽  
Vol 111 (4) ◽  
pp. 378-383 ◽  
Author(s):  
M. B. Ruggles ◽  
E. Krempl

The zero-to-tension ratchetting behavior was investigated under uniaxial loading at room temperature and at 550, 600, and 650°C. In History I the maximum stress level of ratchetting was equal to the stress reached in a tensile test at one percent strain. For History II the maximum stress level was established as the stress reached after a 2100 s relaxation at one percent strain. Significant ratchetting was observed for History I at room temperature but not at the elevated temperatures. The accumulated ratchet strain increases with decreasing stress rate. Independent of the stress rates used insignificant ratchet strain was observed at room temperature for History II. This observation is explained in the context of the viscoplasticity theory based on overstress by the exhaustion of the viscous contribution to the stress during relaxation. The viscous part of the stress is the driving force for the ratchetting in History I. Strain aging is presumably responsible for the lack of short-time inelastic deformation resulting in a nearly rate-independent behavior at the elevated temperatures.


2005 ◽  
Vol 20 (6) ◽  
pp. 1422-1427 ◽  
Author(s):  
Byong-Taek Lee ◽  
Waltraud M. Kriven

The high-temperature indentation fracture and microstructures of dysprosium niobate (DyNbO4) were investigated by optical, scanning, and transmission electron microscopy (OM, SEM, and TEM). Polycrystalline samples were sintered at 1350 °C for 3 h and cut into 3 mm disks for TEM. The disks were indented in a Nikon QM (Tokyo, Japan) hot hardness indenter at room temperature up to 1000 °C. Many lamellar twins having different widths were observed by TEM as well as intergranular microcracks. The room temperature hardness was relatively low at 5.64 GPa and decreased with elevated temperatures. Crack lengths were short, showing a typical micro-cracking effect. In the sample indented at 1000 °C, dislocations in periodic arrays were evident, and their density increased markedly due to heavy plastic deformation.


1959 ◽  
Vol 32 (3) ◽  
pp. 696-700
Author(s):  
M. J. Voorn ◽  
J. J. Hermans

Abstract There are strong reasons to believe that on heating a crosslinked rubber crosslinks are broken and new ones formed. This has been established by the well-known work on stress relaxation of Tobolsky and his school, and others. In the following we will discuss some experiments which give further support to these views, both of a qualitative and quantitative nature. In the first place, we carried out a few preliminary experiments on stress relaxation at elevated temperatures. This stress relaxation may be due to either or both of two effects : (a) a displacement of the crosslinks, (b) a change in the number of crosslinks per unit of volume (crosslinking density p). A measure of ρ can be obtained from the equilibrium degree of swelling at room temperature, and this gives us a means of comparing changes of ρ in a stretched sample with those occurring in the unstretched state. To this end commercial rubber strips were heated in the stretched state in the absence of oxygen at three different temperatures (80, 106, 122° C) for times varying from 2 to 72 hours. The degree of stretch, i.e., the length of the stretched rubber divided by the original length was α=1 (unstretched) in one series, and α=3 in a second series. The initial stress τ0 (for α=3) and the final stress τ at the end of the heating period were read from the stress-strain diagrams, taking into account that for the heat-treated strips there was a permanent set. In other words, τ is the stress needed to give the heat-treated sample at room temperature a length 3 times the length of the original untreated sample; the ratio τ/τ0 is therefore essentially the ratio between the moduli of elasticity. The cross-linking densities ρ0 and ρ before and after heating were derived from swelling experiments (for details see the sections on swelling).


1953 ◽  
Vol 20 (2) ◽  
pp. 289-294
Author(s):  
Leon Green

Abstract Experiments on the compression of graphite cylinders at elevated temperatures are described. It is found that the short-time compressive strength increases with temperature in the range from room temperature to 2000 C, a variation which is consistent with the previously reported behavior of the tensile strength. Photographs of typical modes of deformation and their corresponding stress-strain curves are presented, but a limited degree of temperature control renders the curves semiquantitative in nature. The large, mutually opposing influences of temperature and strain rate are illustrated by photographs of typical failures, and stress-relaxation curves manifest the plasticity of graphite at high temperatures.


Sign in / Sign up

Export Citation Format

Share Document