Studies of the Effects of Ion-Implantation and Electron Beam Irradiation on CuInSe2 Single Crystals

1992 ◽  
Vol 262 ◽  
Author(s):  
C. A. Mullan ◽  
C. J. Kiely ◽  
A. Rockett ◽  
M. Imanieh ◽  
M. V. Yakushev ◽  
...  

ABSTRACTA series of CuInSe2 single crystals which were grown by the vertical Bridgman technique have been implanted with oxygen and xenon ions. These implants tend to cause a change from n to p-type conductivity and an enhancement of the photoconductivity. We present HREM and SIMS characterisation of the microstructural effects caused by high dose ion implants on CuInSe2. We also correlate our data with calculated ion implant profiles. In addition, we show that CuInSe2 thin foils can undergo significant degradation under the electron beam irradiation conditions which are commonly encountered in electron microscopes.

Author(s):  
B. L. Armbruster ◽  
B. Kraus ◽  
M. Pan

One goal in electron microscopy of biological specimens is to improve the quality of data to equal the resolution capabilities of modem transmission electron microscopes. Radiation damage and beam- induced movement caused by charging of the sample, low image contrast at high resolution, and sensitivity to external vibration and drift in side entry specimen holders limit the effective resolution one can achieve. Several methods have been developed to address these limitations: cryomethods are widely employed to preserve and stabilize specimens against some of the adverse effects of the vacuum and electron beam irradiation, spot-scan imaging reduces charging and associated beam-induced movement, and energy-filtered imaging removes the “fog” caused by inelastic scattering of electrons which is particularly pronounced in thick specimens.Although most cryoholders can easily achieve a 3.4Å resolution specification, information perpendicular to the goniometer axis may be degraded due to vibration. Absolute drift after mechanical and thermal equilibration as well as drift after movement of a holder may cause loss of resolution in any direction.


1997 ◽  
pp. 79-91
Author(s):  
Shuji Nakamura ◽  
Gerhard Fasol

2022 ◽  
Vol 6 (1) ◽  
pp. 25
Author(s):  
Oliver Voigt ◽  
Beate Krause ◽  
Petra Pötschke ◽  
Michael T. Müller ◽  
Sven Wießner

The thermoelectric behavior of polypropylene (PP) based nanocomposites containing single walled carbon nanotubes (SWCNTs) and five kinds of ionic liquids (Ils) dependent on composite composition and electron beam irradiation (EB) was studied. Therefore, several samples were melt-mixed in a micro compounder, while five Ils with sufficiently different anions and/or cations were incorporated into the PP/SWCNT composites followed by an EB treatment for selected composites. Extensive investigations were carried out considering the electrical, thermal, mechanical, rheological, morphological and, most significantly, thermoelectric properties. It was found that it is possible to prepare n-type melt-mixed polymer composites from p-type commercial SWCNTs with relatively high Seebeck coefficients when adding four of the selected Ils. The highest Seebeck coefficients achieved in this study were +49.3 µV/K (PP/2 wt.% SWCNT) for p-type composites and −27.6 µV/K (PP/2 wt.% SWCNT/4 wt.% IL type AMIM Cl) for n-type composites. Generally, the type of IL is decisive whether p- or n-type thermoelectric behavior is achieved. After IL addition higher volume conductivity could be reached. Electron beam treatment of PP/SWCNT leads to increased values of the Seebeck coefficient, whereas the EB treated sample with IL (AMIM Cl) shows a less negative Seebeck coefficient value.


1996 ◽  
Vol 03 (01) ◽  
pp. 1113-1119 ◽  
Author(s):  
A. HEILMANN ◽  
A.-D. MÜLLER ◽  
J. WERNER

Small particles of indium or silver were encapsulated in a thin polymer film matrix by simultaneous plasma polymerization and metal evaporation. Electron-beam irradiation inside transmission electron microscopes and with a microfocus electron source was used to induce changes of the encapsulated particle size and shape. At encapsulated indium particles, substantial microstructural changes were observed during the electron-beam irradiation in the electron microscope. Selected area diffraction demonstrates that indium oxide was formed during the electron irradiation. Additional in situ annealing demonstrates that the indium melting point was not reached during electron-beam-induced local heating of the indium particles. At electron-beam irradiation of plasma polymer films with encapsulated silver particles by using a microfocus electron source, the coalescence of the silver particles can be limited to the irradiated areas of the films.


2019 ◽  
Vol 21 (11) ◽  
pp. 3091-3098 ◽  
Author(s):  
Yoichi Hosokawa ◽  
Shuji Kajiya ◽  
Ayako Ohshima ◽  
Nobuhiro Ishida ◽  
Masakazu Washio ◽  
...  

The reduction in CO2 emissions is an important issue across many industries.


RSC Advances ◽  
2015 ◽  
Vol 5 (40) ◽  
pp. 31292-31297 ◽  
Author(s):  
Shuyu Liu ◽  
Yueping Zhao ◽  
Fang Ma ◽  
Liyan Ma ◽  
Kevin O'shea ◽  
...  

EBI treatment of microcystin in the cell and free in the solution. High dose of EBI leads to high removal percentage of MC in the cell and free in the solution. Correlation between Chl-a and MC concentration was studied under EBI.


Sign in / Sign up

Export Citation Format

Share Document