Reinforcement from In-Situ Precipitated Silica in Polysiloxane Elastomers under Various Types of Deformation

1992 ◽  
Vol 274 ◽  
Author(s):  
James E. Mark ◽  
Shuhong Wang ◽  
Ping Xu ◽  
Jianye Wen

ABSTRACTElastomeric networks prepared by tetrafunctionally end linking hydroxyl-terminated poly(dimethylsiloxane) chains (PDMS) were filled by the in-situ precipitation of silica. The resulting networks were investigated under uniaxial elongation, biaxial extension, shear, and torsion in order to characterize the resulting changes in mechanical properties. Compared with the unfilled networks, the silica-filled materials showed large reinforcing effects. Specifically, their values of the modulus, ultimate strength, and rupture energy increased significantly. The results thus indicate that the PDMS networks filled by the in-situ precipitation of silica have very good mechanical properties in several, rather different deformations. Examples of other deformations of interest are equilibrium swelling, and dynamic cycling for characterization of compression set.

1991 ◽  
Vol 64 (5) ◽  
pp. 746-759 ◽  
Author(s):  
Shuhong Wang ◽  
Ping Xu ◽  
James E. Mark

Abstract Elastomeric networks were prepared by tetrafunctionally end-linking hydroxyl-terminated polydimethylsiloxane (PDMS) chains and were then filled by the in-situ precipitation of silica. The resulting networks were investigated in shear and biaxial extension. The method employed to produce large shears was to stretch a short, wide strip between two clamps. The deformation produced in this way is pure shear; simple shear was calculated directly from the pure-shear data. Biaxial extension measurements were carried out by inflation of circular sheets of the networks. Compared to the unfilled networks, the silica-filled samples showed large reinforcing effects. Specifically, their values of the modulus, ultimate strength, and rupture energy increase significantly. The results thus indicate that the PDMS networks filled by the in-situ precipitation of silica have good mechanical properties, not only in uniaxial elongation, but in shear and biaxial extension as well.


2021 ◽  
Vol 875 ◽  
pp. 96-103
Author(s):  
Ayesha Afzal ◽  
Iqra Abdul Rashid ◽  
H.M. Faizan Shakir ◽  
Asra Tariq

Conducting polymer blends Polyaniline-Dodecylbenzene sulfonic acid (Pani.DBSA) and thermoplastic polyurethane (TPU) were prepared using in-situ emulsion polymerization method by dissolving both components in DMF. Ani.DBSA/TPU blends were prepared with different compositions 20/80, 30/70, 40/60 and 50/50 wt%. Theses blends have good conducting and mechanical properties. Blends were characterized by Potentiostate, Thermogravimetric analysis (TGA), Infrared spectroscopy (FTIR) and Dynamic mechanical thermal analyzer (DMTA). The electrical conductivity increases up to 30 wt% loading of aniline.DBSA after that it decreases gradually. The uniform dispersion of aniline.DBSA showed in SEM images which is the indication of a strong connection between aniline.DBSA and TPU which increase the conductivity. These blends can be used as strain sensors.


2019 ◽  
Vol 814 ◽  
pp. 90-95 ◽  
Author(s):  
Guang Lei Lv ◽  
Yuan Yuan Li ◽  
Chen Fei ◽  
Zhi Hao Shan ◽  
Jing Gan ◽  
...  

Graphene nanosheets/polyurethane (GNS/PU) was prepared in situ by polymerization technique for the manufacture of PU safety shoes soles. The graphene nanosheets/polyurethane composites were characterized for their mechanical properties, thermal conductivity and abrasion resistance, and comparison is made with those of the neat polyurethane. The microstructural properties of GNS/PU were characterized by SEM. The results show that with the increase of the amount of graphene within the range of weight-percentages analyzed, the tensile strength of the composites gradually increases. The tensile strength of the GNS/PU composites increased to 64.14 MPa with 2 wt% GNS, compared with 55.1 MPa for neat PU. When the graphene sheets reached 2 wt%, the abrasion volume reached 71 mm3. Compared with the pure PU, the wear performance of GNS/PU composites was significantly improved.


2015 ◽  
Vol 1754 ◽  
pp. 19-24
Author(s):  
A. Alipour Skandani ◽  
R. Ctvrtlik ◽  
M. Al-Haik

ABSTRACTMaterials with different allotropes can undergo one or more phase transformations based on the changes in the thermodynamic states. Each phase is stable in a certain temperature/pressure range and can possess different physical and mechanical properties compared to the other phases. The majority of material characterizations have been carried out for materials under equilibrium conditions where the material is stabilized in a certain phase and a lesser portion is devoted for onset of transformation. Alternatively, in situ measurements can be utilized to characterize materials while undergoing phase transformation. However, most of the in situ methods are aimed at measuring the physical properties such as dielectric constant, thermal/electrical conductivity and optical properties. Changes in material dimensions associated with phase transformation, makes direct measurement of the mechanical properties very challenging if not impossible. In this study a novel non-isothermal nanoindentation technique is introduced to directly measure the mechanical properties such as stiffness and creep compliance of a material at the phase transformation point. Single crystal ferroelectric triglycine sulfate (TGS) was synthetized and tested with this method using a temperature controlled nanoindentation instrument. The results reveal that the material, at the transformation point, exhibits structural instabilities such as negative stiffness and negative creep compliance which is in agreement with the findings of published works on the composites with ferroelectric inclusions.


Author(s):  
B. A. Samuel ◽  
Bo Yi ◽  
R. Rajagopalan ◽  
H. C. Foley ◽  
M. A. Haque

We present results on the mechanical properties of single freestanding poly-furfuryl alcohol (PFA) nanowires (aspect ratio > 50, diameters 100–300 nm) from experiments conducted using a MEMS-based uniaxial tensile testing device in-situ inside the SEM. The specimens tested were pyrolyzed PFA nanowires (pyrolyzed at 800° C).


2007 ◽  
Vol 352 ◽  
pp. 53-58
Author(s):  
Jong Ho Kim ◽  
Young Gu Kim ◽  
Hyeon Keun Lee ◽  
Do Kyung Kim

The mechanical properties of brittle coating structures were characterized by various indentation techniques. The adhesion properties of the coatings were evaluated by in situ scratch and sphere indentation method. Physical vapor deposited TiN coatings on transparent substrates, sapphire, were scratched by diamond cone indenter and in situ observed through the transparent substrate. In situ scratch results reveal that the failure of coating is originated from the damage of the substrate and the plastic deformation of substrate is a primary factor for determining the adhesion breakage. The unique characterization technique for the strength measurement of brittle thin coating has been developed. The strength of the thin coating was evaluated by the sphere indentation on the trilayer structure. The CVD SiC coatings on graphite were characterized by the technique. It is concluded that the microstructure of SiC coatings influences the strength. In this paper, the various indentation technique were applied to evaluate the mechanical properties of TiN and SiC coatings and the effect of microstructure on the reliability of the brittle coating system was discussed.


2020 ◽  
Author(s):  
Alessandro Frigeri ◽  
Maria Cristina De Sanctis ◽  
Francesca Altieri ◽  
Simone De Angelis ◽  
Marco Ferrari ◽  
...  

<p>The ExoMars Rover and Surface Platform planned for launch in 2022 is a large international cooperation between the European Space Agency and Roscosmos with a scientific contribution from NASA.  Thales Alenia Space is the ExoMars mission industrial prime contractor. </p> <p>Besides sensors and instruments characterizing the surface at large scale, the ExoMars’ rover Rosalind Franklin payload features some experiments devoted specifically to the characterization of the first few meters of the Martian subsurface. These experiments are particularly critical for the main ExoMars objective of detecting traces of present or past life forms on Mars, which may have been preserved within the shallow Martian underground [1].</p> <p>Rosalind Franklin will be able to perform both non-invasive geophysical imaging of the underground [2] and subsurface <em>in situ</em> measurements thanks to the Drill unit installed on the rover. The Drill has been developed by Leonardo and its purposes are 1) to collect core samples to be analyzed in the Analytical Laboratory Drawer (ALD) onboard the Rover and 2) to drive the miniaturized spectrometer Ma_MISS within the borehole.   </p> <p>Ma_MISS (Mars Multispectral Imager for Subsurface Studies, [3]) will collect mineralogic measurements from the rocks exposed into the borehole created by the Drill with a spatial resolution of 120 μm down to 2 meters into the Martian subsurface.</p> <p>Rocks are composed of grains of minerals, and their reaction to an applied stress is related to the mechanical behavior of the minerals that compose the rock itself. The mechanical properties of a mineral depend mainly on the strength of the chemical bonds, the orientation of crystals, and the number of impurities in the crystal lattice.</p> <p>In this context, the integration of Ma_MISS measurements and drill telemetry are of great importance.  The mechanical properties of rocks coupled with their mineralogic composition provide a rich source of information to characterize the nature of rocks being explored by ExoMars rover’s drilling activity.</p> <p>Within our study, we are starting to collect telemetry recorded during the Drill unit tests on several samples ranging from sedimentary to volcanic rocks with varying degrees of weathering and water content.  In this first phase of the study, we focused our attention on the variation of torque and penetration speed between different samples, which have been found to be indicative of a particular type of rock or group of rocks and their water content.  </p> <p>We are planning to analyze the same rocks with the Ma_MISS breadboard creating the link between the mineralogy and the mechanical response of the Drill.      </p> <p>This will put the base for a more comprehensive and rich characterization of the <em>in situ</em> subsurface observation by Rosalind Franklin planned at Oxia Planum, Mars in 2023. </p> <p> </p> <p><strong>Acknowledgments: </strong>We thank the European Space Agency (ESA) for developing the ExoMars Project, ROSCOSMOS and Thales Alenia Space for rover development, and Italian Space Agency (ASI) for funding the Ma_MISS experiment (ASI-INAF contract n.2017-48-H.0 for ExoMars MA_MISS phase E/science).</p> <p> </p> <p><strong>References</strong></p> <p>[1] Vago et al., 2017. Astrobiology, 17 6-7. [2] Ciarletti et al., 2017. Astrobiology, 17 6-7. [3] De Sanctis et al., 2017. Astrobiology, 17 6-7.</p>


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Suzana Samaržija-Jovanović ◽  
Vojislav Jovanović ◽  
Gordana Marković ◽  
Ivana Zeković ◽  
Milena Marinović-Cincović

Opalized white tuff (OWT) with 40 μm average particle size and 39.3 m2/g specific surface area has been introduced into polyisoprene rubber (NR). Their reinforcing effects were evaluated by comparisons with those from precipitated silica (PSi). The cure characteristic, apparent activation energy of cross-link (Eac) and reversion (Ear), and mechanical properties of a variety of composites based on these rubbers were studied. This was done using vulcanization techniques, mechanical testing, and scanning electron microscopy (SEM). The results showed that OWT can greatly improve the vulcanizing process by shortening the time of optimum cure (tc90) and the scorch time (ts2) of cross-linked rubber composites, which improves production efficiency and operational security. The rubber composites filled with 50 phr of OWT were found to have good mechanical and elastomeric properties. The tensile strengths of the NR/OWT composites are close to those of NR/PSi composites, but the tear strength and modulus are not as good as the corresponding properties of those containing precipitated silica. Morphology results revealed that the OWT is poorly dispersed in the rubber matrix. According to that, the lower interactions between OWT and polyisoprene rubber macromolecules are obtained, but similar mechanical properties of NR/OWT (100/50) rubber composites compared with NR/PSi (100/50) rubber composites are resulted.


2010 ◽  
Vol 105-106 ◽  
pp. 70-74
Author(s):  
Jian Guang Xu ◽  
Hui Qiang Li ◽  
Hou An Zhang

SiC reinforced MoSi2 composites have been successfully prepared by pressureless sintering from mechanical-assistant combustion synthesized powders. The sintering temperatures and holding time were 1500°C~1650°C at a heating rate of 10K/min and 1 hour, respectively. The microstructure and mechanical properties of the as-sintered composites were investigated. SEM micrographs of SiC/MoSi2 composites showed that SiC particles were homogeneously distributed in MoSi2 matrix. The Vickers hardness, flexural strength and fracture toughness of the SiC/MoSi2 composites were up to 15.50GPa, 468.7MPa and 9.35MPa•m1/2, respectively. The morphologies of fractured surface of the composites revealed the mechanism to improve mechanical properties of MoSi2 matrix. At last, the cyclic oxidation behavior of the composites was discussed. The results of this work showed that in situ SiC/MoSi2 composite powder prepared by MASHS technique could be successfully sintered via pressureless sintering process and significant improvement of room temperature mechanical and anti-oxidation properties could be achieved.


Sign in / Sign up

Export Citation Format

Share Document