The IAEA Coordinated Research Programme on the Performance of High-Level Waste Forms and Packages Under Repository Conditions

1992 ◽  
Vol 294 ◽  
Author(s):  
Vladimir S. Tsyplenkov

ABSTRACTThe IAEA initiated, in 1991, a Coordinated Research Programme (CRP), with the aim of promoting the exchange of information on the results obtained by different countries in the performance of high-level waste forms and waste packages under conditions relevant to final repository. These studies are being undertaken to obtain reliable data as input to safety assessments and environmental impact analyses, for final disposal purposes. The CRP includes studies on waste forms that are presently of interest worldwide: borosilicate glass, Synroc and spent fuel.Ten laboratories leading in investigation of high-level waste form performance have already joined the programme. The results of their studies and plans for future research were presented at the first Research Coordination Meeting, held in Karlsruhe, Germany, in November 1991. The technical contributions concentrated on effecting an understanding of dissolution mechanisms of waste forms under simulated repository conditions. A quantitative interpretation of the chemical processes in the near field is considered a prerequisite for long-term predictions and for the formulation of a "source term" for performance assessment studies.

2003 ◽  
Vol 807 ◽  
Author(s):  
Paul Wersin ◽  
Lawrence H. Johnson ◽  
Bernhard Schwyn

ABSTRACTRedox conditions were assessed for a spent fuel and high-level waste (SF/HLW) and an intermediate-level waste (ILW) repository. For both cases our analysis indicates permanently reducing conditions after a relatively short oxic period. The canister-bentonite near field in the HLW case displays a high redox buffering capacity because of expected high activity of dissolved and surface-bound Fe(II). This is contrary to the cementitious near field in the ILW case where concentrations of dissolved reduced species are low and redox reactions occur primarily via solid phase transformation processes.For the bentonite-canister near field, redox potentials of about -100 to -300 mV (SHE) are estimated, which is supported by recent kinetic data on U, Tc and Se interaction with reduced iron systems. For the cementitious near field, redox potentials of about -200 to -800 mV are estimated, which reflects the large uncertainties related to this alkaline environment.


1981 ◽  
Vol 11 ◽  
Author(s):  
T. J. Headley ◽  
G. W. Arnold ◽  
C. J. M. Northrup

The long-term stability of nuclear waste forms is an important consideration in their selection for safe disposal of radioactive waste. Stability against long-term radiation damage is particularly difficult to assess by short-term laboratory experiments. Much of the displacement damage in high-level waste forms will be generated by heavy recoil nuclei emitted during the α-decay process of long-lived actinide elements. Hence, an accelerated aging test which reliably simulates the α-recoil damage accumulated during thousands of years of storage is desirable. One recent approach to this simulation is to implant the waste form with heavy Pb-ions.I- 6 If the validity of this approach is to be fully assessed, two important questions which have not yet been investigated must be answered.(1) Is the structural damage, including cumulative effects, similar for irradiation by Pb-ions and a-recoil nuclei in a given material? (2) Is the dose-dependence of the accumulated damage similar? The purpose of this investigation was to assess the extent of these similarities in selected materials. We utilized transmission electron microscopy (TEM) to characterize the radiation damage and measure its dose-dependence.


1997 ◽  
Vol 506 ◽  
Author(s):  
D.F. McGinnes ◽  
J. W. Schneider

ABSTRACTThe direct disposal of spent fuel is one of the options considered in the Swiss high level waste management program. One of the important questions, within this program, is the heat generation from high-burnup UO2and MOX spent fuels. Depending on the repository boundary conditions (e.g. ambient temperatures at depth, thermal properties of the host rock etc.), on the maximum temperatures allowed in the near field and on the heat output of the fuel, it may not always be possible to completely fill the conceptual waste canister. The aim of this paper is to address the potential loading of spent fuel into canisters for different possible repository heat loading restrictions


1989 ◽  
Vol 176 ◽  
Author(s):  
Hiroshi Igarashi ◽  
Takeshi Takahashi

ABSTRACTWaste forms have been developed and characterized at PNC (Power Reactor and Nuclear Fuel Development Corporation)to immobilize high-level liquid waste generated from the reprocessing of nuclear spent fuel.Mechanical strength tests were excecuted on simulated solidified highlevel waste forms which were borosilicate glass and diopside glass-ceramic. Commercial glass was tested for comparison. Measured strengths were three-point bending strength,uniaxial compressive strength,impact strength by falling weight method,and Vickers hardness. Fracture toughness and fracture surface energy were also measured by both notch-beam and indentation technique.The results show that mechanical strengths of waste glass form are similar and that the glass ceramic form has the higher fracture toughness.


Author(s):  
Yongsoo Hwang ◽  
Ian Miller

This paper describes an integrated model developed by the Korean Atomic Energy Research Institute (KAERI) to simulate options for disposal of spent nuclear fuel (SNF) and reprocessing products in South Korea. A companion paper (Hwang and Miller, 2009) describes a systems-level model of Korean options for spent nuclear fuel (SNF) management in the 21’st century. The model addresses alternative design concepts for disposal of SNF of different types (CANDU, PWR), high level waste, and fission products arising from a variety of alternative fuel cycle back ends. It uses the GoldSim software to simulate the engineered system, near-field and far-field geosphere, and biosphere, resulting in long-term dose predictions for a variety of receptor groups. The model’s results allow direct comparison of alternative repository design concepts, and identification of key parameter uncertainties and contributors to receptor doses.


Author(s):  
Karel Lemmens ◽  
Christelle Cachoir ◽  
Elie Valcke ◽  
Karine Ferrand ◽  
Marc Aertsens ◽  
...  

The Belgian Nuclear Research Centre (SCK•CEN) has a long-standing expertise in research concerning the compatibility of waste forms with the final disposal environment. For high level waste, most attention goes to two waste forms that are relevant for Belgium, namely (1) vitrified waste from the reprocessing of spent fuel, and (2) spent fuel as such, referring to the direct disposal scenario. The expertise lies especially in the study of the chemical interactions between the waste forms and the disposal environment. This is done by laboratory experiments, supported by modeling. The experiments vary from traditional leach tests, to more specific tests for the determination of particular parameters, and highly realistic experiments. This results in a description of the phenomena that are expected upon disposal of the waste forms, and in quantitative data that allow a conservative long-term prediction of the in situ life time of the waste form. The predictions are validated by in situ experiments in the underground research laboratory HADES. The final objective of these studies, is to estimate the contribution of the waste form to the overall safety of the disposal system, as part of the Safety and Feasibility Case, planned by the national agency ONDRAF/NIRAS. The recent change of the Belgian disposal concept from an engineered barrier system based on the use of bentonite clay to a system based on a concrete buffer has caused a reorientation of the research programme. The expertise in the area of clay-waste interaction will however be maintained, to develop experimental methodologies in collaboration with other countries, and as a potential support to the decision making in those countries where a clay based near field is still the reference. The paper explains the current R&D approach, and highlights some recent experimental set-ups available at SCK•CEN for this purpose, with some illustrating results.


2006 ◽  
Vol 94 (9-11) ◽  
Author(s):  
Michael H. Bradbury ◽  
B. Baeyens

The retention characteristics of the bentonite near-field engineered barrier proposed in most of the concepts for the deep geological disposal of high-level waste and spent fuel are an important component in repository performance assessment studies. Montmorillonite generally constitutes 65 to 90 wt.% of the bentonite. Sorption edge measurements have been performed at trace concentrations for the actinides Am(III), Np(V) and Pa(V) on purified and conditioned SWy-1 montmorillonite under anoxic, carbonate free conditions. To the best of the author´s knowledge, this is the first time a sorption data set has been measured for


Sign in / Sign up

Export Citation Format

Share Document