Diffusion of Hydrogen in Amorphous Silicon in the Low Concentration Regime

1993 ◽  
Vol 297 ◽  
Author(s):  
J.A. Roth ◽  
G.L. Olson ◽  
D.C. Jacobson ◽  
J.M. Poate

We report the first measurements of hydrogen diffusion kinetics in a-Si in the regime of low H concentration (<2×l019 cm−3). The results differ substantially from the diffusion behavior typically observed in hydrogenated a-Si:H at H concentrations >1020 cm−3. The activation energy and pre-exponential factor for low-concentration H diffusion are found to be 2.70 ± 0.02 eV and 2.2 × 104 cm2s−1, respectively, and are shown to be independent of both annealing time and H concentration. It is difficult to reconcile the combination of high activation energy and large pre-exponential factor with a simple deep-trap-limited diffusion model. Consequently, an alternative mechanism for H diffusion involving the migration of dangling bonds coupled with a H bond-switching step is proposed.

Author(s):  
E. I. Maslikova ◽  
V. D. Andreeva ◽  
E. L. Alekseeva ◽  
Yu. A. Yakovlev

Research of hydrogen diffusion in VT6 alloy is carried out considering different types of heat treating and hydrogen charging. The influence of microalloying on the susceptibility to hydride formation and embrittlement of titanium alloys is analyzed, and also effects of an oxide film on hydrogen charging during heat treatment without protective atmosphere, are studied.


Author(s):  
Niels Engholm Henriksen ◽  
Flemming Yssing Hansen

This chapter reviews the microscopic interpretation of the pre-exponential factor and the activation energy in rate constant expressions of the Arrhenius form. The pre-exponential factor of apparent unimolecular reactions is, roughly, expected to be of the order of a vibrational frequency, whereas the pre-exponential factor of bimolecular reactions, roughly, is related to the number of collisions per unit time and per unit volume. The activation energy of an elementary reaction can be interpreted as the average energy of the molecules that react minus the average energy of the reactants. Specializing to conventional transition-state theory, the activation energy is related to the classical barrier height of the potential energy surface plus the difference in zero-point energies and average internal energies between the activated complex and the reactants. When quantum tunnelling is included in transition-state theory, the activation energy is reduced, compared to the interpretation given in conventional transition-state theory.


1993 ◽  
Vol 48 (1-2) ◽  
pp. 406-414
Author(s):  
T. Springer

Abstract An introductory survey on applications of high-resolution neutron spectroscopy is presented, dealing with the motion of hydrogen in solids, namely concerning (i) random rotational motions or stationary tunneling states of NH+4-ions or CH3-groups, and (ii) diffusion of hydrogen in alloys. For the rotation of hydrogenous groups in solids, at higher temperatures rotational jumps can be found, whereas quantum states are observed by μeV-spectroscopy at temperatures below 50 K. On the other hand, hydrogen diffusion does not reveal pronounced evidence of quantum effects, except for hydrogen in a metal containing impurity atoms.


2015 ◽  
Vol 4 (3) ◽  
pp. 153-176 ◽  
Author(s):  
Alexis Bonnet ◽  
Fathi Dkhil ◽  
Elisabeth Logak

AbstractWe consider a condensed phase (or solid) combustion model and its linearization around the travelling front solution. We construct an Evans function to characterize the eigenvalues of the linearized problem. We estimate this functional in the high activation energy limit. We deduce the existence of zeros with nonnegative real part for high activation energy, which proves the linear instability of the travelling front solution.


1996 ◽  
Vol 441 ◽  
Author(s):  
W. K. Liu ◽  
X. M. Fang ◽  
P. J. McCann ◽  
M. B. Santos

AbstractRHEED intensity oscillations observed during MBE growth of CaF2 on Si(111) and PbSe on CaF2/Si(111) are presented. The effects of substrate temperature and initial nucleation procedure are investigated. Strong temporal oscillations of the specular beam intensity are found to be most readily observed at temperatures below 200°C for both CaF2 and PbSe. Growth rates measured as a function of cell temperatures exhibit Arrhenius behavior with activation energies of 5.0 eV and 1.93 eV for CaF2 and PbSe, respectively. The relatively high activation energy obtained for CaF2 is consistent with the high melting point and sublimation energy of ionic fluorides.


2016 ◽  
Vol 138 (5) ◽  
Author(s):  
Anil Kumar Varma ◽  
Prasenjit Mondal

The present study was conducted to investigate the physicochemical properties and pyrolysis kinetics of sugarcane bagasse (SB). The physiochemical properties of SB were determined to examine its potential for pyrolysis. The physiochemical properties such as proximate analysis, ultimate analysis, heating values, lignocellulosic composition, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) of SB were investigated. The pyrolysis experiments were conducted in a nonisothermal thermogravimetric analyzer (TGA) to understand the thermal degradation behavior of SB. The activation energy (Ea) of SB pyrolysis was calculated by model-free Kissinger–Akahira–Sunose (KAS) and Ozawa–Flynn–Wall (OFW) methods. Average values of activation energy determined through KAS and OFW methods are found as 91.64 kJ/mol and 104.43 kJ/mol, respectively. Variation in the activation energy with degree of conversion was observed, which shows that pyrolysis is a complex process composed of several reactions. Coats–Redfern method was used to calculate the pre-exponential factor and reaction order. Conversion of SB due to heat treatment computed by using the kinetic parameters is found to be in good agreement with the experimental conversion data, and the maximum error limit between the experimental and predicted conversions is 8.5% for 5 °C/min, 6.0% for 10 °C/min, and 11.6% for 20 °C/min. The current investigation proves the suitability of SB as a potential feedstock for pyrolysis.


2010 ◽  
Vol 297-301 ◽  
pp. 1301-1305
Author(s):  
Anatoly Yakovlevich Fishman ◽  
Tatiana Eugenievna Kurennykh ◽  
Vladimir Borisovich Vykhodets ◽  
V.B. Vykhodets

Isotope exchange of oxygen 18О2 with the boundary of nanograins of oxide LaMnO3+ obtained by the method of shock-wave loading was investigated in the temperature range of 400 – 500 °C. It was established that the temperature dependence of the isotope exchange rate is described by the Arrhenius expression, the activation energy and the pre-exponential factor being 1.67 eV and 1.8∙102 cm/s, respectively. Comparison with literature data has shown that for oxide LaMnO3+, a significant difference in activation energies and pre-exponential factors is observed for the isotope exchange rate with a ‘defect-free’ surface and the nanograin boundary. In case of the boundary, these parameters were higher: the activation energy about two times, and the pre-exponential factor, by almost 7 orders of magnitude.


Author(s):  
D. A. Kessler ◽  
V. N. Gamezo ◽  
E. S. Oran

The propagation of detonations through several fuel–air mixtures with spatially varying fuel concentrations is examined numerically. The detonations propagate through two-dimensional channels, inside of which the gradient of mixture composition is oriented normal to the direction of propagation. The simulations are performed using a two-component, single-step reaction model calibrated so that one-dimensional detonation properties of model low- and high-activation-energy mixtures are similar to those observed in a typical hydrocarbon–air mixture. In the low-activation-energy mixture, the reaction zone structure is complex, consisting of curved fuel-lean and fuel-rich detonations near the line of stoichiometry that transition to decoupled shocks and turbulent deflagrations near the channel walls where the mixture is extremely fuel-lean or fuel-rich. Reactants that are not consumed by the leading detonation combine downstream and burn in a diffusion flame. Detonation cells produced by the unstable reaction front vary in size across the channel, growing larger away from the line of stoichiometry. As the size of the channel decreases relative to the size of a detonation cell, the effect of the mixture composition gradient is lessened and cells of similar sizes form. In the high-activation-energy mixture, detonations propagate more slowly as the magnitude of the mixture composition gradient is increased and can be quenched in a large enough gradient.


Author(s):  
Zoltán Balogh-Michels ◽  
Igor Stevanovic ◽  
Aurelio Borzi ◽  
Andreas Bächli ◽  
Daniel Schachtler ◽  
...  

AbstractIn this work, we present our results about the thermal crystallization of ion beam sputtered hafnia on 0001 SiO2 substrates and its effect on the laser-induced damage threshold (LIDT). The crystallization process was studied using in-situ X-ray diffractometry. We determined an activation energy for crystallization of 2.6 ± 0.5 eV. It was found that the growth of the crystallites follows a two-dimensional growth mode. This, in combination with the high activation energy, leads to an apparent layer thickness-dependent crystallization temperature. LIDT measurements @355 nm on thermally treated 3 quarter-wave thick hafnia layers show a decrement of the 0% LIDT for 1 h @773 K treatment. Thermal treatment for 5 h leads to a significant increment of the LIDT values.


2021 ◽  
Author(s):  
Zuzanna Kabacińska ◽  
Alida Timar-Gabor ◽  
Benny Guralnik

&lt;p&gt;Thermally activated processes can be described mathematically by the Arrhenius equation. The Meyer-Neldel Rule (MNR), or compensation law, linearly relates the pre-exponent term to the logarithm of the excitation enthalpy for processes that are thermally driven in an Arrhenian manner. This empirical rule was observed in many areas of materials science, in physics, chemistry, and biology. In geosciences it was found to uphold in hydrogen diffusion (Jones 2014a) and proton conduction (Jones 2014b) in minerals.&lt;/p&gt;&lt;p&gt;Trapped charge dating methods that use electron spin resonance (ESR) or optically or thermally stimulated luminescence (OSL and TL) are based on the dose-dependent accumulation of defects in minerals such as quartz and feldspar. The thermal stability of these defects in the age range investigated is a major prerequisite for accurate dating, while the accurate determination of the values of the trap depths and frequency factors play a major role in thermochronometry applications.&amp;#160;&lt;/p&gt;&lt;p&gt;The correlation of kinetic parameters for diffusion has been very recently established for irradiated oxides (Kotomin et al. 2018). A correlation between the activation energy and the frequency factor that satisfied the Meyer&amp;#8211;Neldel rule was reported when the thermal stability of [AlO&lt;sub&gt;4&lt;/sub&gt;/h&lt;sup&gt;+&lt;/sup&gt;]&lt;sup&gt;0&lt;/sup&gt; and [TiO&lt;sub&gt;4&lt;/sub&gt;/M&lt;sup&gt;+&lt;/sup&gt;]&lt;sup&gt;0&lt;/sup&gt; ESR signals in quartz was studied as function of dose (Benzid and Timar-Gabor 2020). Here we compiled the optically stimulated luminescence (OSL) data published so far in this regard, and investigated experimentally the thermal stability of OSL signals for doses ranging from 10 to 10000 Gy in sedimentary quartz samples. We report a linear relationship between the natural logarithm of the preexponent term (the frequency factor) and the activation energy E, corresponding to a Meyer-Neldel energy of 45 meV, and a deviation from first order kinetics in the high dose range accompanied by an apparent decrease in thermal stability. The implications of these observations and the atomic and physical mechanisms are currently studied.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;&lt;strong&gt;References&lt;/strong&gt;&lt;/p&gt;&lt;p&gt;Benzid, K., Timar Gabor, A. 2020. The compensation effect (Meyer&amp;#8211;Neldel rule) on [AlO&lt;sub&gt;4&lt;/sub&gt;/h&lt;sup&gt;+&lt;/sup&gt;]&lt;sup&gt;0&lt;/sup&gt; and [TiO&lt;sub&gt;4&lt;/sub&gt;/M&lt;sup&gt;+&lt;/sup&gt;]&lt;sup&gt;0&lt;/sup&gt; paramagnetic centers in irradiated sedimentary quartz. &lt;em&gt;AIP Advance&lt;/em&gt;s 10, 075114.&lt;/p&gt;&lt;p&gt;Kotomin, E., Kuzovkov, V., Popov, A. I., Maier, J., and Vila, R. 2018. Anomalous kinetics of diffusion-controlled defect annealing in irradiated ionic solids. &lt;em&gt;J. Phys. Chem. A&lt;/em&gt; 122(1), 28&amp;#8211;32&lt;/p&gt;&lt;p&gt;Jones, A. G. (2014a), Compensation of the Meyer-Neldel Compensation Law for H diffusion in minerals, &lt;em&gt;Geochem. Geophys. Geosyst.&lt;/em&gt;, 15, 2616&amp;#8211;2631&lt;/p&gt;&lt;p&gt;Jones, A. G. (2014b), Reconciling different equations for proton conduction using the Meyer-Neldel compensation rule, &lt;em&gt;Geochem. Geophys. Geosyst&lt;/em&gt;., 15, 337&amp;#8211;349&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document