Relaxation of Electron Beam-Induced Metastable Defects in a-Si:II

1993 ◽  
Vol 297 ◽  
Author(s):  
M. Grimbergen ◽  
R. Mcconville ◽  
D. Redfield ◽  
R.H. Bube

Relaxation of the metastable defect density in undoped amorphous silicon is observed after keV electron irradiation. The time constant for relaxation has an activation energy close to 1 eV, similar to that for light-induced defects. Relaxation appears to follow two or more stages. A large initial density relaxes rapidly, followed by slower relaxation more characteristic of light-induced defects. Separation of these components allows for a better comparison of e-beam and light-induced saturation defect density.

1992 ◽  
Vol 258 ◽  
Author(s):  
M. Grimbergen ◽  
A. Lopez-Otero ◽  
A. Fahrenbruch ◽  
L. Benatar ◽  
D. Redfield ◽  
...  

ABSTRACTGeneration, saturation, and annealing characteristics of metastable defects formed by electron beam irradiation at 20 keV and photon irradiation at 1.9 eV have been compared. Saturation density reached by electron irradiation is temperature independent over the range 225 K to 300 K, although a small activation energy of the generation rate may be present. This differs from observed temperature dependent light-induced saturation from 330 K to 470 K, although differences are expected because of the separate temperature ranges and dissimilar carrier excitation rates. The electron beam-induced saturated defect density is about 5 times larger than for light-induced saturation at 350 K and high light intensity (generation rate ≈ 1022cm-3s-1). Defects formed by electron irradiation anneal at 300 K with a stretched exponential time constant three orders of magnitude smaller than for light-induced defects. After electron irradiation, dark conductivity relaxes faster than photoconductivity. Once the dark Fermi level becomes constant during defect density relaxation, photoconductivity is inversely proportional to the defect density.


2001 ◽  
Vol 664 ◽  
Author(s):  
Stephan Heck ◽  
Howard M. Branz

ABSTRACTWe report experimental results that help settle apparent inconsistencies in earlier work on photoconductivity and light-induced defects in hydrogenated amorphous silicon (a-Si:H) and point toward a new understanding of this subject. After observing that light-induced photoconductivity degradation anneals out at much lower T than the light-induced increase in deep defect density, Han and Fritzsche[1] suggested that two kinds of defects are created during illumination of a-Si:H. In this view, one kind of defect degrades the photoconductivity and the other increases defect sub-bandgap optical absorption. However, the light-induced degradation model of Stutzmann et al.[2] assumes that photoconductivity is inversely proportional to the dangling-bond defect density. We observe two kinds of defects that are distinguished by their annealing activation energies, but because their densities remain in strict linear proportion during their creation, the two kinds of defects cannot be completely independent.In our measurements of photoconductivity and defect absorption (constant photocurrent method) during 25°C light soaking and during a series of isochronal anneals between 25 < T < 190°C, we find that the absorption measured with E ≤1.1 eV, first increases during annealing, then exhibits the usual absorption decrease found for deeper defects. The maximum in this absorption at E ≤1.1eV occurs simultaneously with a transition from fast to slow recovery of photoconductivity. The absorption for E ≤1.1eV shows two distinct annealing activation energies: the signal rises with about 0.87 eV and falls with about 1.15 eV. The 0.87 eV activation energy roughly equals the activation energy for the dominant, fast, recovery of photoconductivity. The 1.15 eV activation energy roughly equals the single activation energy for annealing of the light-induced dangling bond absorption.


1993 ◽  
Vol 297 ◽  
Author(s):  
R.A. Street ◽  
W.B. Jackson ◽  
M. Hack

Metastable defect creation by illumination and by a forward current in p-i-n devices are compared using CPM and reverse current measurements of the defect density. The data show that the same defects are formed by the two mechanisms, but with different spatial profiles. Numerical modelling shows how the spatial profile influences the reverse bias current.


2007 ◽  
Vol 989 ◽  
Author(s):  
Tong Ju ◽  
Janica Whitaker ◽  
Stefan Zukotynski ◽  
Nazir Kherani ◽  
P. Craig Taylor ◽  
...  

AbstractThe appearance of optically or electrically induced defects in hydrogenated amorphous silicon (a-Si:H), especially those that contribute to the Staebler-Wronski effect, has been the topic of numerous studies, yet the mechanism of defect creation and annealing is far from clarified. We have been observing the growth of defects caused by tritium decay in tritiated a Si-H instead of inducing defects optically. Tritium decays to 3He, emitting a beta particle (average energy of 5.7 keV) and an antineutrino. This reaction has a half âlife of 12.5 years. In these 7 at.% tritium-doped a-Si:H samples each beta decay will create a defect by converting a bonded tritium to an interstitial helium, leaving behind a silicon dangling bond. We use ESR (electron spin resonance) and PDS( photothermal deflection spectroscopy) to track the defects. First we annealed these samples, and then we used ESR to determine the initial defect density around 1016 to 1017 /cm3 , which is mostly a surface spin density. After that we have kept the samples in liquid nitrogen for almost two years. During the two years we have used ESR to track the defect densities of the samples. The defect density increases without saturation to a value of 3x1019/cm3 after two years, a number smaller than one would expect if each tritium decay were to create a silicon dangling bond (2x1020/cm3). This result suggests that there might be either an annealing process that remains at liquid nitrogen temperature, or tritium decay in clustered phase not producing a dangling bond due to bond reconstruction and emission of the hydrogen previously paired to Si-bonded tritium atom. After storage in liquid nitrogen for two years, we have annealed the samples. We have stepwise annealed one sample at temperatures up to 200°C, where all of the defects from beta decay are annealed out, and reconstructed the annealing energy distribution. The second sample, which was grown at 150°C, has been isothermally annealing at 300 K for several months. The defects remain well above their saturation value at 300 K, and the shape of decay suggests some interaction between the defects.


1990 ◽  
Vol 192 ◽  
Author(s):  
David Redfield ◽  
Richard H. Bube

ABSTRACTThe existence of saturation (or steady state) in the density of light-induced defects in amorphous Si:H is shown to have major importance for the interpretation of the nature and origin of these defects. First, a number of characteristics of the steady-state and transient responses to light and temperature are described and contrasted. These lead to the conclusion that the saturation value is the only useful criterion of the number of defects in these materials. We then describe a new atomic model for defects, unifying both dopant-induced and light-induced defects. This model invokes foreign atoms in defects, and saturation reflects the limitation imposed by the numbers of such atoms. Many other observed properties of defects are explained by this model.


2013 ◽  
Vol 4 ◽  
pp. 474-480 ◽  
Author(s):  
Willem F van Dorp ◽  
Thomas W Hansen ◽  
Jakob B Wagner ◽  
Jeff T M De Hosson

We present the results of our study about the deposition rate of focused electron beam induced processing (FEBIP) as a function of the substrate temperature with the substrate being an electron-transparent amorphous carbon membrane. When W(CO)6 is used as a precursor it is observed that the growth rate is lower at higher substrate temperatures. From Arrhenius plots we calculated the activation energy for desorption, E des, of W(CO)6. We found an average value for E des of 20.3 kJ or 0.21 eV, which is 2.5–3.0 times lower than literature values. This difference between estimates for E des from FEBIP experiments compared to literature values is consistent with earlier findings by other authors. The discrepancy is attributed to electron-stimulated desorption, which is known to occur during electron irradiation. The data suggest that, of the W(CO)6 molecules that are affected by the electron irradiation, the majority desorbs from the surface rather than dissociates to contribute to the deposit. It is important to take this into account during FEBIP experiments, for instance when determining fundamental process parameters such as the activation energy for desorption.


1995 ◽  
Vol 377 ◽  
Author(s):  
Jong-Hwan Yoon ◽  
H. L. Kim

ABSTRACTWe report the results of a study of metastable defect creation by pulsed light soaking in undoped hydrogenated amorphous silicon (a-Si:H). An illumination time dependence of the defect density, a saturated defect density, and light-induced annealing under pulsed laser light have been studied. Measurements show approximately a t1/2 time-dependence of the defect creation, which is independent of light intensity. It is observed that the saturation value of the defect density is about one order of magnitude higher than by cw illumination in device quality films. It has been suggested that these results would be due to the difference in the light-induced defect annealing rate between cw and pulsed lights, in which it is found that the light-induced annealing rate by pulsed light is lower than by cw light.


2000 ◽  
Vol 609 ◽  
Author(s):  
Daxing Han ◽  
Guozhen Yue ◽  
Jing Lin ◽  
Hitoe Habuchi ◽  
Eugene Iwaniczko ◽  
...  

ABSTRACTWe have studied light-soaking effects, such as photoconductivity (PC) degradation kinetics, the changes of conductivity activation energy, Ea, and the defect density of states (DOS) in a-Si:H films deposited by hot-wire CVD. Films were deposited in a substrate temperature range from 280 to 440 °C for filament temperatures of 1900 and 2100 °C. We find that (a) the photodegradation kinetics does not follow the stretched exponential rule for all of the samples; (b) the Fermi level position moves up after light-soaking for most samples; and (c) the metastable defect DOS deduced from sub-band gap absorption is not consistent with that deduced from the electron mobility-lifetime product. The results are discussed according to the possible mechanism in which charged defects exist in hot-wire a-Si:H films.a


1970 ◽  
Vol 46 (1) ◽  
pp. 9-16 ◽  
Author(s):  
AKM Fazle Kibria

The effects of irradiation on the structure of purified multi-walled carbon nanotubes (MWCNTs) having 6-19 graphitic shells and outer diameters of 8.15-17.11 nm were investigated using electron beam of energies 200 keV and dose of 2.16 x 1017 e cm-2s-1. It was observed that the electron irradiation created a number of chronological alterations in the tube structures. These were identified to be tube contraction, destruction of the innermost graphitic shell, deformation of graphitic shells and its proliferation, break down of the graphitic shells and their spreading into the tube hole and finally the destruction of the whole tube. MWCNTs having the largest innermost diameter found suffer from the highest contraction. The tube contraction behavior found stops when the innermost graphitic shell starts to destroy. Irradiation affected the innermost graphitic shell first and that of the smallest diameter was the more rapidly. It occurred probably due to having the highest curvature value. Tubes having inner shell of diameter about 4.8 nm suffer from fractional destruction within 5-15 s of irradiation exposure. Such a shell was ruined within 1 minute of irradiation exposure but that of diameter 7.0 nm was survived up to 2 minutes. It seems that the irradiation induced defects created in the MWCNTs can be used for the diversified applications of nanotubes such as the hydrogen storage enhancement in them. Keywords: Carbon nanotube; Electron irradiation; Tube contraction; Innermost shell; Defect. DOI: http://dx.doi.org/10.3329/bjsir.v46i1.8099 Bangladesh J. Sci. Ind. Res. 46(1), 9-16, 2011  


1995 ◽  
Vol 377 ◽  
Author(s):  
Qiming Li ◽  
R. Biswas

ABSTRACTMolecular dynamics with the tight-binding approach are utilized to examine the fundamental process of dangling bond creation via the rebonding of H from Si-H bonds to weak Si-Si bonds. The defect formation energy is found to strongly correlate with the bond-length of the weak Si-Si bond, indicating that the distribution of weak Si-Si bonds controls the total defect density. Rate equations for thermally generated and light-induced defects are developed and utilized to calculate the equilibrium and saturated defect density. The results agree well with experimental data.


Sign in / Sign up

Export Citation Format

Share Document