Optical Direct and Indirect Excitation of Er3+ Ions in Silicon

1993 ◽  
Vol 298 ◽  
Author(s):  
A. Majima ◽  
S. Uekusa ◽  
K. Ootake ◽  
K. Abe ◽  
M. Kumagai

AbstractOptical direct and indirect excitation of erbium (Er) ions in silicon substrates was performed in order to investigate the high efficiency of Er3+− related 1.54μm emission (4I13/2→4I15/2) for direct excitation that is not concerned with the indirect band gap and low quantum efficiency of a Si host. The samples were prepared by ion-implantation or thermal diffusion methods. In each sample, photoluminescence (PL) showed the peaks originating from 4I13/2→4I15/2 of Er3+ ions.In Er thermally diffused samples, optical excitation for energy level 4I11/2 of Er3+ ions was successfully effected by photoluminescence excitation spectroscopy (PLE). The PLE spectra consisted six peaks (963.1nm, 965.0nm, 976.lnm, 978.9nm and 980.9nm) which were caused by direct excitation (4I15/2→4I11/2) of Er3+ ions. The emission directly excited is about 2 times more intense than the indirectly excited emission. The six peaks originating from the splitting of the 4I11/2 levels meant that Er3+ ions were in the sites of noncubic symmetry. The samples prepared by Er ion-implantation did not show the effect.

1993 ◽  
Vol 301 ◽  
Author(s):  
A. Majima ◽  
S. Uekusa ◽  
K. Ootake ◽  
K. Abe ◽  
M. Kumagai

ABSTRACTOptical direct and indirect excitation of erbium (Er) ions in silicon substrates was performed in order to investigate the high efficiency of Er3+− related 1.54µm emission (4I13/2→4I15/2) for direct excitation that is not concerned with the indirect band gap and low quantum efficiency of a Si host. The samples were prepared by ion-implantation or thermal diffusion methods. In each sample, photoluminescence (PL) showed the peaks originating from 4I13/2→4I15/2 of Er3+ ions.In Er thermally diffused samples, optical excitation for energy level 4I11/2 of Er3+ ions was successfully effected by photoluminescence excitation spectroscopy (PLE). The PLE spectra consisted six peaks (963. lnm, 965.Onm, 976.lnm, 978.9nm and 980.9nm) which were caused by direct excitation (4I15/2→4I11/2) of Er3+ ions. The emission directly excited is about 2 times more intense than the indirectly excited emission. The six peaks originating from the splitting of the 4I11/2 levels meant that Er3+ ions were in the sites of noncubic symmetry. The samples prepared by Er ion-implantation did not show the effect.


1999 ◽  
Vol 582 ◽  
Author(s):  
Justin D. Holmes ◽  
Kirk J. Ziegler ◽  
Keith P. Johnston ◽  
R. Chris Doty ◽  
Brian A. Korgel

ABSTRACTSize-monodisperse, stable 15 Å diameter silicon nanocrystals were synthesized in significant quantities using supercritical octanol as a capping ligand. The silicon nanocrystals exhibit an indirect band gap with discrete electronic transitions in the absorbance and photoluminescence excitation (PLE) spectra. The octanol-capped clusters show efficient blue band-edge photoemission with a luminescence quantum yield of 23 % at room temperature.


2018 ◽  
Vol 115 (38) ◽  
pp. 9509-9514 ◽  
Author(s):  
Daniel Niesner ◽  
Martin Hauck ◽  
Shreetu Shrestha ◽  
Ievgen Levchuk ◽  
Gebhard J. Matt ◽  
...  

Lead halide perovskites are used in thin-film solar cells, which owe their high efficiency to the long lifetimes of photocarriers. Various calculations find that a dynamical Rashba effect could significantly contribute to these long lifetimes. This effect is predicted to cause a spin splitting of the electronic bands of inversion-symmetric crystalline materials at finite temperatures, resulting in a slightly indirect band gap. Direct experimental evidence of the existence or the strength of the spin splitting is lacking. Here, we resonantly excite photocurrents in single crystalline (CH3NH3)PbI3 with circularly polarized light to clarify the existence of spin splittings in the band structure. We observe a circular photogalvanic effect, i.e., the photocurrent depends on the light helicity, in both orthorhombic and tetragonal (CH3NH3)PbI3. At room temperature, the effect peaks for excitation photon energies ΔE=110 meV below the direct optical band gap. Temperature-dependent measurements reveal a sign change of the effect at the orthorhombic–tetragonal phase transition, indicating different microscopic origins in the two phases. Within the tetragonal phase, both ΔE and the amplitude of the circular photogalvanic effect increase with temperature. Our findings support a dynamical Rashba effect in this phase, i.e., a spin splitting caused by thermally induced structural fluctuations which break inversion symmetry.


Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 988
Author(s):  
Chrysa Aivalioti ◽  
Alexandros Papadakis ◽  
Emmanouil Manidakis ◽  
Maria Kayambaki ◽  
Maria Androulidaki ◽  
...  

Nickel oxide (NiO) is a p-type oxide and nitrogen is one of the dopants used for modifying its properties. Until now, nitrogen-doped NiO has shown inferior optical and electrical properties than those of pure NiO. In this work, we present nitrogen-doped NiO (NiO:N) thin films with enhanced properties compared to those of the undoped NiO thin film. The NiO:N films were grown at room temperature by sputtering using a plasma containing 50% Ar and 50% (O2 + N2) gases. The undoped NiO film was oxygen-rich, single-phase cubic NiO, having a transmittance of less than 20%. Upon doping with nitrogen, the films became more transparent (around 65%), had a wide direct band gap (up to 3.67 eV) and showed clear evidence of indirect band gap, 2.50–2.72 eV, depending on %(O2-N2) in plasma. The changes in the properties of the films such as structural disorder, energy band gap, Urbach states and resistivity were correlated with the incorporation of nitrogen in their structure. The optimum NiO:N film was used to form a diode with spin-coated, mesoporous on top of a compact, TiO2 film. The hybrid NiO:N/TiO2 heterojunction was transparent showing good output characteristics, as deduced using both I-V and Cheung’s methods, which were further improved upon thermal treatment. Transparent NiO:N films can be realized for all-oxide flexible optoelectronic devices.


2021 ◽  
Author(s):  
Mingming Jiang ◽  
Yang Liu ◽  
Ruiming Dai ◽  
Kai Tang ◽  
Peng Wan ◽  
...  

Suffering from the indirect band gap, low carrier mobility, and large lattice mismatch with other semiconductor materials, one of the current challenges in Si-based materials and structures is to prepare...


Author(s):  
Mengmeng Chen ◽  
Muhammad Akmal Kamarudin ◽  
Ajay K. Baranwal ◽  
Gaurav Kapil ◽  
Teresa S. Ripolles ◽  
...  

RSC Advances ◽  
2021 ◽  
Vol 11 (29) ◽  
pp. 17595-17602
Author(s):  
Shengquan Fu ◽  
Yueyue Xiao ◽  
Xinxin Yu ◽  
Tianxing Xiang ◽  
Fei Long ◽  
...  

High-efficiency perovskite solar cells with good grain morphology and adjustable band gap were prepared by ultrasonic spray.


Sign in / Sign up

Export Citation Format

Share Document