Electrical Mobility and Carrier Lifetime in Single-Crystal, Isotopically Pure Type IIa Synthetic Diamond

1993 ◽  
Vol 302 ◽  
Author(s):  
L. S. Pan ◽  
S. Han ◽  
D. R. Kania ◽  
W. Banholzer

ABSTRACTSingle-crystal type IIa diamonds were synthesized by applying high temperatures (1200°;C) and high pressures (52000 atm) to powdered polycrystalline diamond grown using conventional CVD techniques. These samples were isotopically pure, consisting of approximately 99.93% 12C, compared to roughly 98.96% in natural IIa diamonds. In addition, the dislocation density of the synthetic samples is significantly lower than in natural IIa diamonds, as indicated by birefringence measurements. Electrical properties of these samples were measured using transient photoconductivity, where a 3 ps pulse of ultraviolet light (6.1 eV) was used to excite free electron-hole pairs. Compared to natural IIa diamonds, the lifetime at low fields (200 V/cm) and low excitation densities (1015 cm-3) in the synthetic sample was significantly longer (1 ns in the synthetic sample vs. 200 to 300 ps in natural diamond). At higher fields, a much longer decay component, exceeding 10 ns, was observed in the synthetic sample. Combined electron and hole mobilities were around 2500 cm2/V-s in the synthetic diamond, compared to 3000 to 4000 cm2/V-s in the best natural samples. At a field of 2 kV/cm, the drift distance in the synthetic sample was over 50 μm, considerably longer than that of natural diamond (10 μm). This is due primarily to the much longer carrier lifetimes. The longer lifetimes in the synthetic sample demonstrate that the properties of the best natural diamonds can be exceeded and are encouraging for the development of sensitive diamond radiation detectors. These longer lifetimes are likely due to the higher quality and lower defect density in the synthetic samples, rather than the isotopic purity.

1990 ◽  
Vol 5 (11) ◽  
pp. 2483-2489 ◽  
Author(s):  
K. Tankala ◽  
T. DebRoy ◽  
M. Alam

Oxidation of polycrystalline diamond films on (111) Si wafers in air at temperatures up to 1073 K was investigated by thermogravimetry. The diamond films before and after partial oxidation were characterized by optical and scanning electron microscopy, x-ray, infrared, and Raman spectroscopy. The oxidation of synthetic diamond films started at a lower temperature than that for natural diamond. The rates of oxidation of the diamond films synthesized by the hot filament and the microwave plasma methods were intermediate between the rates of oxidation of the 111 and 100 planes of natural diamond crystals. The apparent activation energy for the oxidation of the synthetic diamond films agreed well with that for the oxidation of natural diamond via diamond to graphite transition at low oxygen pressures.


2021 ◽  
Vol 5 (2) ◽  
pp. 177-182
Author(s):  
Maksym Tsysar ◽  
Sergey Ivakhnenko ◽  
Anatoliy Zakora ◽  
Galina Ilnitska ◽  
Oleg Zanevsky ◽  
...  

This article focuses on the problem of using large single crystals of type Ib synthetic diamond in single crystal and drilling tools. According to the literature review for the use of large diamonds in drilling equipment relevant conditions. The is shown possible negative effects of the temperature load on the diamond single crystal. The is presented developed technique for estimating the static strength of large diamond single crystals. It has been shown that microcrystals in the form of octahedra and cubes are formed as a result of heat treatment on the surface of synthetic diamond single crystals. The results of studies of the strength of large single crystals of synthetic diamonds of millimeter size are shown. In contrast to the classical approach, when IIb crystals are used for the production of drilling equipment, we present Ib crystals because they are closer to natural diamond in terms of physical and mechanical properties. The static strength criterion was used to assess the strength. It has been shown that crystals with a size of 1000 ... 1100 μm have a higher value of static strength than crystals with a size of 1200 μm and larger.


2021 ◽  
Author(s):  
Guodong David Zhan ◽  
Chinthaka Gooneratne ◽  
Timothy Eric Moellendick ◽  
Duanwei He ◽  
Jianhui Xu ◽  
...  

Abstract Polycrystalline diamond compact (PDC) bits have been increasing their application drilling many formations in the past 20+ years. However, their performance in drilling very hard, abrasive and interbedded formations still needs improvement. The main weak point comes from their primary cutting elements, PDC cutters, which still need improvements of wear resistance, impact resistance, and thermal stability. During the traditional manufacturing of the PDC cutters, cobalt catalyst has to be used to lower the pressure and temperature. In this study, we developed an ultra high pressure and high temperature (UHPHT) technology to make the PDC cutters without metallic catalyst into reality. Through this development, we can generate pressures of 14 GPa-35 GPa, which is three to seven times of that in the traditional PDC cutter manufacturing technology. In addition, the extreme high temperatures ranging from 1,900 °C to 2,300 °C are achieved, which is 500-900 °C higher than that in traditional process. Using this UHPHT technology, we successfully processed ultra-strong and catalyst-free PDC materials with two high pressures at 14 GPa and 16 GPa, respectively, to study the different responses of the material properties from different processing parameters. The new process applied industry available micro-sized synthetic diamond powders as starting material to eliminate the large volume shrinkage in phase transformation from graphite to diamond which is typically experienced in traditional manufacturing process. The hardness of the 14-GPa CFPCD materials reaches the top limit of the single crystal diamond, more than double that of the traditional PDC cutters. The material also possesses the near-metallic fracture toughness – more than two times of the traditional PDC cutters. Furthermore, the 16-GPa CFPCD material breaks all four single crystal diamond indenters in Vickers hardness tester, an indication of the world's hardest material in the family of diamonds. As a result, the material exhibits industry-recorded wear resistance and thermal stability. The combination of these breakthrough properties of the new CFPCD materials activates the goal in the effort of "One-Run-To-TD" in drilling operation, after the implementation of CFPCD materials as PDC cutters for PDC drill bits.


2018 ◽  
Vol 36 (2) ◽  
pp. 134-141
Author(s):  
Shi Tang ◽  
Jun Su ◽  
Taijin Lu ◽  
Yongwang Ma ◽  
Jie Ke ◽  
...  

CrystEngComm ◽  
2021 ◽  
Author(s):  
Shuai Fang ◽  
Yongkui Wang ◽  
Liangchao Chen ◽  
Zhiyun Lu ◽  
Zhenghao Cai ◽  
...  

Pressure is a necessary condition for the growth of natural diamond. Studying the effect of pressure on the nitrogen content of diamond is important for exploring the growth mechanism of...


CIRP Annals ◽  
1990 ◽  
Vol 39 (1) ◽  
pp. 585-588 ◽  
Author(s):  
R. Komanduri ◽  
L.L. Fehrenbacher ◽  
L.M. Hanssen ◽  
A. Morrish ◽  
K.A. Snail ◽  
...  

Author(s):  
Innokenty Kantor ◽  
Alexander Kurnosov ◽  
Catherine McCammon ◽  
Leonid Dubrovinsky

AbstractA high-pressure quasi-single crystal X-ray diffraction study of a synthetic iron oxide Fe


Author(s):  
Alexandr A. Shul’zhenko ◽  
Lucyna Jaworska ◽  
Alexandr N. Sokolov ◽  
Vladislav G. Gargin ◽  
Ludmila A. Romanko

The electrical and physical properties of the electrically conductive super hard material on the basis of polycrystalline diamond and n-layered graphenes obtained at high pressures and temperatures were studied. It was established that the increase in graphene in a polycrystalline diamond compact leads to a sharp decrease in resistance. Wherein the hardness of the samples is slightly inferior to the hardness of diamond poly crystals obtained without the use of graphene.


2017 ◽  
Vol 24 (1) ◽  
pp. 103-109 ◽  
Author(s):  
Sergey Terentyev ◽  
Maxim Polikarpov ◽  
Irina Snigireva ◽  
Marco Di Michiel ◽  
Sergey Zholudev ◽  
...  

Linear parabolic diamond refractive lenses are presented, designed to withstand high thermal and radiation loads coming from upgraded accelerator X-ray sources. Lenses were manufactured by picosecond laser treatment of a high-quality single-crystal synthetic diamond. Twelve lenses with radius of curvature at parabola apex R = 200 µm, geometrical aperture A = 900 µm and length L = 1.5 mm were stacked as a compound refractive lens and tested at the ESRF ID06 beamline. A focal spot of size 2.2 µm and a gain of 20 were measured at 8 keV. The lens profile and surface quality were estimated by grating interferometry and X-ray radiography. In addition, the influence of X-ray glitches on the focusing properties of the compound refractive lens were studied.


Sign in / Sign up

Export Citation Format

Share Document