Physicochemical and Microstructural Characterization of Rf Sputtering Magnetron Pb(ZrTi)O3 Thin Films

1993 ◽  
Vol 310 ◽  
Author(s):  
F. Varniere ◽  
E. Caytan ◽  
B. Eakim ◽  
H. Achard ◽  
B. Agius

AbstractLead zirconate titanate thin films were deposited on Pt/TiN/BPSG/Si structures by sputtering an oxide target of nominal composition (Pb(Zr0.55,Ti0.45)O3 or PZT) in argon plasma. The PZT films were deposited at different pressures and different substrate temperatures ranging from floating temperature to 400°; the thicknesses of the sputtered films were in the 15-720 nm range. The absolute and relative cation and oxygen compositions of the thin films were determined by a new method based on the simultaneous use of Rutherford Backscattering Spectroscopy (RBS) and Nuclear Reaction Analysis (NRA) induced by a deuteron beam. The total deposition rate and atomic ones are observed as a function of the substrate temperature and pressure. Therefore the dependence of fil composition on pressure and substrate temperature is discussed.Post-deposition annealing studies and ferroelectric properties are presented. The values of the remanent polarization, Pr, were in the range 5-7 µC/cm2, the coercitive field, Ec, between 15 and 25 kV/cm and the dielectric constant, µr, evaluated from capacitance measurements around 1200, depending on the process parameters.

1991 ◽  
Vol 243 ◽  
Author(s):  
E. Catitan ◽  
B. Agius ◽  
H. Achard ◽  
J.P. Joly ◽  
J.C. Cheang Wong ◽  
...  

AbstractLead zirconate titanate thin films have been grown by rf magnetron sputtering an oxide target of nominal composition [Pb(Zr0.55,Ti0.45)O3 or PZT] in argon. The kinetics of the sputtering process and the effect of sputtering parameters on film composition have been studied and related to the continuously monitored optical emission of the plasma. The relative and absolute cation and oxygen compositions of the thin films were determined by a new method based on the simultaneous use of Rutherford backscattering spectroscopy (RBS) and nuclear reaction analysis (NRA) induced by a deuteron beam. The conditions for the deposition at room temperature of stoichiometric PZT films were established.


1994 ◽  
Vol 361 ◽  
Author(s):  
B. Ea Kim ◽  
M.C. Hugon ◽  
F. Varniere ◽  
B. Agius ◽  
H. Achard ◽  
...  

ABSTRACTDue to their high dielectric constant, good chemical stability and good insulating properties, lead zirconate titanate (PZT) thin films are considered as promising materials to replace Si3N4 and Ta2O5 for use as the capacitor dielectric in future high density DRAMs. Moreover, the ferroelectric quality of PZT films also allows use of this material in non volatile memories. In this paper, we investigate the properties of PZT films deposited from an oxide target of nominal composition {Pb1.1(Zr0.55,Ti0.45)O3} in a radio frequency (rf) magnetron sputtering system. The Pt(deposited at 450°C)/[TiN/Ti/BPSG/Si] structure annealed at 450°C at 10−6 mbar (Pt(450°C)/{TiN/Ti/BPSG/Si}450°c,10–6mbar) was used as a substrate material in this work. The PZT films were deposited at different pressures, and different substrate temperatures ranging from floating temperature to 400°C; the thicknesses of the sputtered films were in the 15–720 nm range. The kinetics of the sputtering process and the effect of sputtering parameters on film composition have been studied and related to the continuously monitored optical emission of the plasma. The relative cation and oxygen compositions of the films were determined by a new method based on the simultaneous use of Rutherford Backscattering Spectrometry (RBS) and Nuclear Reaction Analysis (NRA) induced by a deuteron beam. The conditions for the deposition of stoichiometric PZT thin films were established.Electrical characterizations of the PZT films including resistivity, dielectric constant, dissipation factor were studied as a function of the temperature. From initial electrical measurements, it appears that a dielectric constant of 740 can be obtained for PZT 55/45 films deposited on a previously annealed Pt/TiN/Ti/BPSG/Si structure.


1998 ◽  
Vol 541 ◽  
Author(s):  
F. Ayguavives ◽  
B. Ea-Kim ◽  
B. Agius ◽  
I. Vickridge ◽  
A. I. Kingon

AbstractLead zirconate titanate (PZT) thin films have been deposited in a reactive argon/oxygen gas mixture from a metallic target of nominal composition Pb1.1(Zr0.4Ti0.6)O3 by rf magnetron sputtering on Si substrates and RuO2/SiO2/Si structures. During plasma deposition, in situ Optical Emission Spectroscopy (OES) measurements clearly show a correlation between the evolution of characteristic atomic emission line intensities and the thin film composition determined by simultaneous Rutherford Backscattering Spectroscopy (RBS) and Nuclear Reaction Analysis (NRA). As a result, the cathode surface state can be monitored by OES to ensure a good compositional transferability from the target to the film and reproducibility of thin film properties for given values of deposition parameters. Electrical properties and crystallization have been optimized with a 90 nm PZT thin film grown on RuO2 electrodes. These PZT films, annealed with a very modest thermal budget (550°C) are fatigue-free and show very low leakage currents (J=2.10−8 A/cm2 at 1 V). The use of a metallic target allows us to control the oxygen incorporation in the PZT thin film and also, using 18O as a tracer, to study the oxygen vacancy migration which plays a key role in fatigue, leakage current, and electrical degradation/breakdown in PZT thin films.


2013 ◽  
Vol 39 (6) ◽  
pp. 7167-7172
Author(s):  
J.-E. Mancilla ◽  
J.-N. Rivera ◽  
C.-A. Hernández ◽  
A. Márquez-Herrera ◽  
M.-G. Zapata-Torres

2004 ◽  
Vol 830 ◽  
Author(s):  
Hiroshi Nakaki ◽  
Hiroshi Uchida ◽  
Shoji Okamoto ◽  
Shintaro Yokoyama ◽  
Hiroshi Funakubo ◽  
...  

ABSTRACTRare-earth-substituted tetragonal lead zirconate titanate thin films were synthesized for improving the ferroelectric property of conventional lead zirconate titanate. Thin films of Pb1.00REx (Zr0.40Ti0.60)1-(3x /4)O3 (x = 0.02, RE = Y, Dy, Er and Yb) were deposited on (111)Pt/Ti/SiO2/(100)Si substrates by a chemical solution deposition (CSD). B-site substitution using rare-earth cations described above enhanced the crystal anisotropy, i.e., ratio of PZT lattice parameters c/a. Remanent polarization (Pr) of PZT film was enhanced by Y3+-, Dy3+- and Er3+-substitution from 20 μC/cm2 up to 26, 25 and 26 μC/cm2 respectively, while ion substitution using Yb3+ degraded the Pr value down to 16 μC/cm2. These films had similar coercive fields (Ec) of around 100 kV/cm. Improving the ferroelectric property of PZT film by rare-earth-substitution would be ascribed to the enhancement of the crystal anisotropy. We concluded that ion substitution using some rare-earth cations, such as Y3+, Dy3+ or Er3+, is one of promising technique for improving the ferroelectric property of PZT film.


2002 ◽  
Vol 37 (10) ◽  
pp. 1749-1754 ◽  
Author(s):  
I Oidor-Juárez ◽  
P Garcı́a-Jiménez ◽  
G Torres-Delgado ◽  
R Castanedo-Pérez ◽  
O Jiménez-Sandoval ◽  
...  

2012 ◽  
Vol 488-489 ◽  
pp. 103-108 ◽  
Author(s):  
Manisha Tyagi ◽  
Monika Tomar ◽  
Vinay Gupta

The influence of substrate temperature on the UV-Visible-near-IR optical properties, namely the band gap, the Urbach energy and the refractive index of NiO thin films deposited by RF sputtering has been investigated. The optical band gap of thin films showed the blue-shift in the transmission spectra with increase in the substrate temperature which is related to variation in carrier concentration of the deposited films. Urbach energy (EU) values indicate that the films deposited at 400 oC substrate temperature show least structural disorder. The refractive index of the films is found to decrease continuously with increase in the substrate temperature at all photon energies in the visible and near-IR region, and is attributed to the decreasing packing density of the films. Introduction


2007 ◽  
Vol 546-549 ◽  
pp. 2175-2178
Author(s):  
Liang Qiao ◽  
Xiao Fang Bi

In this work, MgO thin films were prepared by rf magnetron sputtering technique on two different substrates of Si (100) wafers and amorphous glasses. The influence of different deposition conditions such as substrate temperature, Ar pressure, film thicknesses on the crystal structure of MgO thin films were studied. BaTiO3 ferroelectric thin films were subsequently deposited on the MgO films. The XRD results showed that the orientation of MgO films was dependent greatly on the substrate temperature. A highly (100) oriented MgO thin films were obtained at the temperature of 800°C. The crystallographic texture has been deteriorated rapidly as the argon pressure decreased to 1.0 Pa. It has been also found that the film thickness has a great influence on the film orientation. High substrate temperature, high argon pressure and a certain thickness appear to be favorable for formation of a good texture for the MgO films. The structure and microstructure of the BaTiO3 films were various both with deposition conditions and with the crystallographic texture of the MgO. A highly (001) oriented ferroelectric BTO film was obtained on the MgO films with an optimized deposition conditions.


Sign in / Sign up

Export Citation Format

Share Document