Identification of swift heavy ion induced defects in Pt/n-GaN Schottky diodes by in-situ deep level transient spectroscopy

2018 ◽  
Vol 33 (8) ◽  
pp. 085008 ◽  
Author(s):  
Ashish Kumar ◽  
Jyotsna Dhillon ◽  
Shammi Verma ◽  
Parmod Kumar ◽  
K Asokan ◽  
...  
1993 ◽  
Vol 316 ◽  
Author(s):  
J. Ravi ◽  
Yu. Erokhin ◽  
S. Koveshnikov ◽  
G.A. Rozgonyi ◽  
C.W. White

ABSTRACTThe influence of in-situ electronic perturbations on defect generation during 150 keV proton implantation into biased silicon p-n junctions has been investigated. The concentration and spatial distribution of the deep traps were characterized using a modification of the double corelation deep level transient spectroscopy technique (D-DLTS). With the in-situ electric field applied, a decrease in concentration of vacancy-related, as well as H-related, traps was observed. 500 keV He+ implantation was also performed to supplement the above studies and to differentiate any passivation effects due to hydrogen. A model based on the charge states of hydrogen and vacancies was used to explain the observed behaviour.


2002 ◽  
Vol 742 ◽  
Author(s):  
A. O. Evwaraye ◽  
S. R. Smith ◽  
W. C. Mitchel ◽  
M. A. Capano

ABSTRACTAluminum (Al) and argon (Ar) ions were implanted into n-type 4H-SiC epitaxial layers at 600 °C. The energy of the ions was 160 keV at a dose of 2 × 1016 cm-2. After annealing at 1600 °C for 5–60 minutes, Schottky diodes were fabricated on the ion implanted samples. Deep Level Transient Spectroscopy (DLTS) was used to characterize ion implantation induced defects. A defect at EC-0.18 eV was observed in the Al+ implanted devices annealed for five and fifteen minutes. However, annealing for 30 minutes produced an additional deeper defect at EC -0.24 eV. This defect annealed out after a sixty minute anneal. DLTS studies of Ar+ implanted devices showed six defect levels at EC -0.18 eV, EC -0.23 eV, EC -0.31 eV, EC -0.38eV, EC -0.72 eV, and EC -0.81eV. These defects are attributed to intrinsic-related defects. It is suggested that “hot” implantation of Al+ inhibits the formation of intrinsic-related defects. While “hot” implantation of Ar+ into 4H-SiC does not reduce the concentration of the vacancies and interstitials.


2004 ◽  
Vol 815 ◽  
Author(s):  
A. O. Evwaraye ◽  
S. R. Smith ◽  
W. C. Mitchel ◽  
G. C. Farlow ◽  
M. A. Capano

AbstractArgon ions (Ar+) were implanted into n-type 4H-SiC epitaxial layers at 600 °C. The energy of the ions was 160 keV and at a dose of 2 × 1016 cm−2. After post-implantation annealing at 1600 °C, Schottky diodes were fabricated on the ion implanted samples. Bulk n-type 4H-SiC samples were irradiated at room temperature with 1 MeV electrons at doses of 1 × 1016 to 5.1 × 1017 el/cm2. The current density of the beam was 0.91 μA/cm2. Deep Level Transient Spectroscopy (DLTS) was used to characterize the induced defects. DLTS studies of Ar+ implanted samples showed six defect levels at EC – 0.18 eV, EC – 0.23eV, EC – 0.31eV, EC – 0.38 eV, EC – 0.72 eV, and EC – 0.81 eV. Z1/Z2 defect is the dominant defect in the electron irradiated sample and anneals out completely after 10 minutes at 1000 °C. However, Z1/Z2 defect in Ar+ implanted samples was stable up to 1600 °C. It is suggested that the annealing behavior of Z1/Z2 depends on the source of its formation.


2000 ◽  
Vol 5 (S1) ◽  
pp. 922-928
Author(s):  
A. Hierro ◽  
D. Kwon ◽  
S. A. Ringel ◽  
M. Hansen ◽  
U. K. Mishra ◽  
...  

The deep level spectra in both p+-n homojunction and n-type Schottky GaN diodes are studied by deep level transient spectroscopy (DLTS) in order to compare the role of the junction configuration on the defects found within the n-GaN layer. Both majority and minority carrier DLTS measurements are performed on the diodes allowing the observation of both electron and hole traps in n-GaN. An electron level at Ec−Et=0.58 and 0.62 V is observed in the p+-n and Schottky diodes, respectively, with a concentration of ∼3−4×1014 cm−3 and a capture cross section of ∼1−5×10−15 cm2. The similar Arrhenius behavior indicates that both emissions are related to the same defect. The shift in activation energy is correlated to the electric field enhanced-emission in the p+-n diode, where the junction barrier is much larger. The p+-n diode configuration allows the observation of a hole trap at Et−Ev=0.87 eV in the n-GaN which is very likely related to the yellow luminescence band.


Sign in / Sign up

Export Citation Format

Share Document