Scanning Probe Microscopy Study of Layered Dichalcogenide ReS2

1993 ◽  
Vol 327 ◽  
Author(s):  
Stephen P. Kelty ◽  
Albert F. Ruppert ◽  
Russell R. Chianelli ◽  
Jingqing Ren ◽  
Myung-Hwan Whangbo

AbstractSingle crystal ReS2 was characterized using atomic force microscopy (AFM) and scanning tunneling microscopy (STM). The observed atomic-resolution AFM and STM images were interpreted by calculating the total, p(r0), and partial electron density distribution, p(r0, ef), respectively, of a single ReS2 layer. The experimental and theoretical results indicate that the basal plane surface state density is dominated by contributions from the sulfur layer This is in contrast to bulk band structure calculations which would predict that the major contribution to the STM images should be from the Re atoms. Furthermore, the surface-to-tip STM images are found to be quite different from tip-to-surface images. By interpreting STM and AFM data from p(r0) and p(r0, ef) calculations, it is shown that site specific structural and electronic details of the surface can be elucidated.

2011 ◽  
Vol 1318 ◽  
Author(s):  
S. J. O’Brien ◽  
H. Ozgur Ozer ◽  
G. L. W. Cross ◽  
J. B. Pethica

ABSTRACTA major challenge for scanned probe microscopy is to identify structures and chemical species on a surface, which have not already been inferred from other analytical techniques. Progress is impeded by the fact that in general the structure and composition of the tip atom is not known. To illustrate some of the issues involved, we report simultaneous scanning tunneling microscopy/atomic force microscopy (STM/AFM) of the TiO2 (110) surface. The use of small amplitudes enabled the simultaneous acquisition of force gradient and barrier height images during standard STM imaging. Surprisingly, we find most STM images exhibit a corrugation contrast inverse to that usually reported in the literature. However, regardless of the contrast in STM, force gradient images always showed greater attraction over O rows. Barrier height images also show this consistency, always being greater over O rows. This supports the theoretical model of the electronic structure of the surface, but shows that the tip structure and interaction cannot be ignored in modeling STM images. We conclude that there is a fine balance between topography and local density of states (LDOS) in STM imaging of this surface; which of them dominates the STM image is determined by the tip. Simultaneous multi-parameter imaging is useful in interpreting images reliably, particularly on multi-component surfaces.


2020 ◽  
Vol 11 ◽  
pp. 443-449
Author(s):  
Daiki Katsube ◽  
Shoki Ojima ◽  
Eiichi Inami ◽  
Masayuki Abe

The structure of the rutile TiO2(110)-(1 × 2) reconstructed surface is a phase induced by oxygen reduction. There is ongoing debate about the (1 × 2) reconstruction, because it cannot be clarified whether the (1 × 2) structure is formed over a wide area or only locally using macroscopic analysis methods such as diffraction. We used non-contact atomic force microscopy, scanning tunneling microscopy, and low-energy electron diffraction at room temperature to characterize the surface. Ti2O3 rows appeared as bright spots in both NC-AFM and STM images observed in the same area. High-resolution NC-AFM images revealed that the rutile TiO2(110)-(1 × 2) reconstructed surface is composed of two domains with different types of asymmetric rows.


Author(s):  
CE Bracker ◽  
P. K. Hansma

A new family of scanning probe microscopes has emerged that is opening new horizons for investigating the fine structure of matter. The earliest and best known of these instruments is the scanning tunneling microscope (STM). First published in 1982, the STM earned the 1986 Nobel Prize in Physics for two of its inventors, G. Binnig and H. Rohrer. They shared the prize with E. Ruska for his work that had led to the development of the transmission electron microscope half a century earlier. It seems appropriate that the award embodied this particular blend of the old and the new because it demonstrated to the world a long overdue respect for the enormous contributions electron microscopy has made to the understanding of matter, and at the same time it signalled the dawn of a new age in microscopy. What we are seeing is a revolution in microscopy and a redefinition of the concept of a microscope.Several kinds of scanning probe microscopes now exist, and the number is increasing. What they share in common is a small probe that is scanned over the surface of a specimen and measures a physical property on a very small scale, at or near the surface. Scanning probes can measure temperature, magnetic fields, tunneling currents, voltage, force, and ion currents, among others.


2021 ◽  
Vol 03 (02) ◽  
pp. 128-133
Author(s):  
Zijie Qiu ◽  
Qiang Sun ◽  
Shiyong Wang ◽  
Gabriela Borin Barin ◽  
Bastian Dumslaff ◽  
...  

Intramolecular methyl–methyl coupling on Au (111) is explored as a new on-surface protocol for edge extension in graphene nanoribbons (GNRs). Characterized by high-resolution scanning tunneling microscopy, noncontact atomic force microscopy, and Raman spectroscopy, the methyl–methyl coupling is proven to indeed proceed at the armchair edges of the GNRs, forming six-membered rings with sp3- or sp2-hybridized carbons.


COSMOS ◽  
2007 ◽  
Vol 03 (01) ◽  
pp. 1-21 ◽  
Author(s):  
XIAN NING XIE ◽  
HONG JING CHUNG ◽  
ANDREW THYE SHEN WEE

Nanotechnology is vital to the fabrication of integrated circuits, memory devices, display units, biochips and biosensors. Scanning probe microscope (SPM) has emerged to be a unique tool for materials structuring and patterning with atomic and molecular resolution. SPM includes scanning tunneling microscopy (STM) and atomic force microscopy (AFM). In this chapter, we selectively discuss the atomic and molecular manipulation capabilities of STM nanolithography. As for AFM nanolithography, we focus on those nanopatterning techniques involving water and/or air when operated in ambient. The typical methods, mechanisms and applications of selected SPM nanolithographic techniques in nanoscale structuring and fabrication are reviewed.


Sign in / Sign up

Export Citation Format

Share Document