In Situ Testing of Waste Glass in Clay

1993 ◽  
Vol 333 ◽  
Author(s):  
Pierre Ph. Van Iseghem

ABSTRACTThe actual status of an in-situ test programme exposing different waste glass samples directly to Boom clay is reviewed. Corrosion test tubes have been retrieved after residence for 5 years at 16° C, 2 years at 90° C, and 5 years at 170° C. The corrosion is interpreted in terms of mass loss, surface analysis by SEM and profiling by EPMA and SIMS. At 16° C, glasses dissolve about 0.02 – 0.08 µm per year. At higher temperature dissolution is more than two orders of magnitude larger. A good agreement is obtained between the mass losses and the surface analyses. The advantages and limitations of the Belgian in-situ tests are compared with the conclusions of an international expert group.

1986 ◽  
Vol 23 (4) ◽  
pp. 573-594 ◽  
Author(s):  
P. K. Robertson

The status of in situ testing and its application to foundation engineering are presented and discussed. The in situ test methods are discussed within the framework of three groups: logging, specific, and combined test methods. The major logging test methods discussed are standard penetration test (SPT), cone penetration test (CPT), and the flat plate dilatometer test (DMT). The major specific test methods discussed are the prebored pressuremeter test (PMT), the self-bored pressuremeter test (SBPMT), and the screw plate load test (SPLT). Discussion is also presented on recent tests that combine features of logging tests (using the CPT) and specific tests (e.g. the seismic, the electrical resistivity/dielectric, and the lateral stress sensing cone penetration tests). A brief discussion is also presented on the applicability, as perceived by the author, of existing in situ test methods and the future of in situ testing applied to foundation engineering. Key words: in situ testing, foundation engineering, penetration testing, pressuremeter.


1996 ◽  
Vol 33 (1) ◽  
pp. 189-198 ◽  
Author(s):  
J A.R Ortigao ◽  
R P Cunha ◽  
L S Alves

An in situ testing programme was carried out in 1992 aimed at obtaining design parameters for the construction of the Brasília Underground line, Brazil. The top layer of soil consisted of an unsaturated and collapsible soft porous clay layer 5–30 m thick followed by residual soils from slate and interlayered metasiltsones and quartzites. A series of Marchetti dilatometer (DMT) logging tests results were comapred with Ménard pressuremeter (PMT) and horizontal plate loading (PLH) tests, as well as laboratory tests on block samples. In situ stresses, strength, and deformation parameters were obtained for the porous clay. The DMT yielded very good results: excellent repeatability, low cost, and results that agree with other in situ tests and laboratory data. Key words: porous clay, in situ testing, dilatometer, pressuremeter.


1991 ◽  
Vol 257 ◽  
Author(s):  
Werner Lutze ◽  
Rodney C. Ewing

ABSTRACTThe comparison of laboratory data from the corrosion of borosilicate nuclear waste glass (German SM513LW11 and French R7T7) with data from the Materials Interface Interactions Test (MIIT) and Repository Systems Simulation Test (RSST) illustrates the inherent limitations of in situ tests. Although in situ tests may confirm the short term behavior of waste forms and identify phenomena associated with the repository system, they do not provide the fundamental basis for the extrapolation of long-term behavior.


Author(s):  
M A Wilson

There are several procedures that are used to assess empirically the in situ water absorption properties of concretes. All of these are based on complex absorption geometries involving both surface cap and drilled hole sources. In this paper, analyses are presented that show that the absorption from any radially symmetrical source may be described by a polynomial in (time)1/2 in which the sorptivity is the coefficient of the leading term. Application of the analyses thus enables the fundamental measure of water absorption, the sorptivity, to be calculated, so allowing valid and accurate comparisons to be made between data from different materials and also from different test geometries. The analyses can also define the extent to which the simple application of these tests for comparative purposes is acceptable and the cases in which such empirical comparisons may be misleading. Other considerations relating to the in situ testing of cementitious materials generally are considered briefly.


2018 ◽  
Vol 9 ◽  
pp. 602-607 ◽  
Author(s):  
Aaron Kobler ◽  
Christian Kübel

To relate the internal structure of a volume (crystallite and phase boundaries) to properties (electrical, magnetic, mechanical, thermal), a full 3D reconstruction in combination with in situ testing is desirable. In situ testing allows the crystallographic changes in a material to be followed by tracking and comparing the individual crystals and phases. Standard transmission electron microscopy (TEM) delivers a projection image through the 3D volume of an electron-transparent TEM sample lamella. Only with the help of a dedicated TEM tomography sample holder is an accurate 3D reconstruction of the TEM lamella currently possible. 2D crystal orientation mapping has become a standard method for crystal orientation and phase determination while 3D crystal orientation mapping have been reported only a few times. The combination of in situ testing with 3D crystal orientation mapping remains a challenge in terms of stability and accuracy. Here, we outline a method to 3D reconstruct the crystal orientation from a superimposed diffraction pattern of overlapping crystals without sample tilt. Avoiding the typically required tilt series for 3D reconstruction enables not only faster in situ tests but also opens the possibility for more stable and more accurate in situ mechanical testing. The approach laid out here should serve as an inspiration for further research and does not make a claim to be complete.


1993 ◽  
Vol 333 ◽  
Author(s):  
M. J. Plodinec ◽  
G. G. Wicks

ABSTRACTAn extremely important question for the eventual disposal of glass in natural environments is the relevance of laboratory testing of glass durability to the long-term performance of glass in geologic environments. The purpose of this study was to attempt to provide an empirical answer to that question, by applying the hydration thermodynamics approach (which has successfully been applied to laboratory tests of glass durability) to the results of longer-term testing in natural environments.The results show that hydration thermodynamics is a useful tool for explaining the effects of glass composition observed in in-situ tests, in several environments. Thus, it appears to provide a link between laboratory tests of glass durability and the results of in-situ tests in natural environments. Perhaps the most important conclusion of this effort is that the in-situ test results emphasize the importance of control of chemical composition during glass production as a means of achieving a durable glass.


2000 ◽  
Vol 37 (3) ◽  
pp. 505-529 ◽  
Author(s):  
C E (Fear) Wride ◽  
P K Robertson ◽  
K W Biggar ◽  
R G Campanella ◽  
B A Hofmann ◽  
...  

One of the primary objectives of the Canadian Liquefaction Experiment (CANLEX) project was to evaluate in situ testing techniques and existing interpretation methods as part of the overall goal to focus and coordinate Canadian geotechnical expertise on the topic of soil liquefaction. Six sites were selected by the CANLEX project in an attempt to characterize various deposits of loose sandy soil. The sites consisted of a variety of soil deposits, including hydraulically placed sand deposits associated with the oil sands industry, natural sand deposits in the Fraser River Delta, and hydraulically placed sand deposits associated with the hard-rock mining industry. At each site, a target zone was selected and various in situ tests were performed. These included standard penetration tests, cone penetration tests, seismic downhole cone penetration tests (giving shear wave velocity measurements), geophysical (gamma-gamma) logging, and pressuremeter testing. This paper describes the techniques used in the in situ testing program at each site and presents a summary and interpretation of the results.Key words: CANLEX, in situ testing, shear wave velocity, geophysical logging, pressuremeter.


Sign in / Sign up

Export Citation Format

Share Document