Charged Defect State Distributions Obtained from the Analysis of Photoconductivities in Intrinsic a-Si:H Films

1994 ◽  
Vol 336 ◽  
Author(s):  
Mehmet Güneş ◽  
R. W. Collins ◽  
C. R. Wronski

ABSTRACTSteady-state photoconductivity, sub-bandgap absorption and electron spin resonance (ESR) Measurements were carried out on annealed and light soaked intrinsic hydrogenated Amorphous silicon (a-Si:H) films. The experimental results were modeled using detailed numerical Model. The defect densities derived from the sub-bandgap absorption in the light soaked films were correlated with the ESR spin densities. Selfconsistent fitting of the data was obtained using a gap state distribution which consists of positively charged defect states above, negatively charged defect states below and neutral defect states at about Midgap. Both the annealed and the light degraded states are modeled using the same distribution of gap states whose densities increase upon light soaking with a slight increase in the ratio of the neutral to charged defect densities. These results on intrinsic a-Si:H are consistent with those of charged defect Models.

1987 ◽  
Vol 95 ◽  
Author(s):  
Z E. Smith ◽  
S. Wagner

AbstractThe experimental phenomena associated with light-induced degradation and thermal recovery of hydrogenated amorphous silicon (a-Si:H) films are reviewed, with special emphasis on the limitations of each experimental technique. When several techniques are used in concert, a fuller picture emerges. Recent experiments suggest different positions in the band-gap of the paramagnetic-associated defect states (the dangling bonds) for doped and undopedfilms; this information can be combined with conductivity, sub-bandgap optical absorption and electron spin resonance data to yield a model for the density of gap states (DOS) in a- Si:H, including how the DOS changes upon illumination and annealing.


2000 ◽  
Vol 609 ◽  
Author(s):  
Niko Schultz ◽  
P. Craig Taylor

ABSTRACTWe investigated the temperature dependence of the production and annealing kinetics of the light induced defect states in a:Si:H by electron spin resonance (ESR). At low temperatures (T ∼ 25 K) the silicon dangling bond production is about half as efficient as it is at 300 K. Defects, which are created below about 100 K, almost entirely anneal at room temperature. A sample of a-Si:H, which is subjected to several photo-excitation and annealing cycles, shows a very slow increase of both the degraded and annealed defect densities. The difference in the spin densities between the annealed and degraded states decreases with an increasing number of degradation/annealing cycles.


1998 ◽  
Vol 507 ◽  
Author(s):  
Helmut Stiebig ◽  
Frank Siebke ◽  
Reinhard Carius ◽  
Josef Klomfaβ

ABSTRACTIn this work, gap states in doped and undoped a-SiGe:H alloys are examined by numerical simulations of sub-bandgap absorption spectra measured by the constant photocurrent method and photothermal deflection spectroscopy. Deconvolution methods, neglecting the condition of charge neutrality, can be used for a rough estimate of the defect density value but not for ob- taining detailed information on the distribution of gap states in undoped samples. Our numerical analysis uses adapted occupation statistics and takes into account the condition of charge neutrality. Good agreement between measured and simulated PDS and CPM spectra is obtained. For a certain composition, i.e. a certain bandgap, the investigation of doped films yields infor- mation on the density and the position of charged defect states in the bandgap. In addition, the density of neutral defect states can be derived from a comparison of CPM and PDS spectra. The results reveal the coexistence of charged and neutral defects. In doped as well as in undoped films, charged defect states dominate the defect density. In the investigated range of compo- sitions the defect distribution of a-SiGe:H is similar to those found in a-Si:H. The width of the defect distributions does not decrease with decreasing bandgap. No evidence for a different be- havior of Si- and Ge-related defect states can be found in sub-bandgap absorption spectra.


2005 ◽  
Vol 862 ◽  
Author(s):  
M. Zeman ◽  
V. Nádaždy ◽  
R. Durný ◽  
J.W. Metselaar

AbstractThe evolution of the programmed defect-state distributions in intrinsic hydrogenated amorphous silicon (a-Si:H) due to light soaking was qualitatively determined from charge deep-level transient spectroscopy. The defect-state distribution in a-Si:H was programmed by applying a particular bias voltage on the metal-oxide-semiconductor structure while annealing the structure above the equilibration temperature. The programmed distributions simulate defect-state distributions in different parts of an actual a-Si:H solar cell, particularly in the intrinsic regions close to the p/i and i/n interfaces.The defect-state distribution in the bulk of the intrinsic layer is characterized by comparable contributions from the positively charged defect states above midgap, Dh, neutral states, Dz, and negatively charged states below midgap, De. In the programmedp-type (n-type) defect-state distribution there is an excess of the Dh (De) states. Light exposure modifies the p-type distribution that evolves to a broad distribution of states with a maximum around midgap. This distribution is dominated by Dz states with substantial contributions from Dh and De states. In case of n-type distribution light soaking only slightly influences the distribution by removing a part of the Dh states and by a small increase of Dz and De states.


1994 ◽  
Vol 76 (4) ◽  
pp. 2260-2263 ◽  
Author(s):  
Mehmet Güneş ◽  
Christopher R. Wronski ◽  
T. J. McMahon

2004 ◽  
Vol 808 ◽  
Author(s):  
J. M. Pearce ◽  
J. Deng ◽  
V. Vlahos ◽  
R. W. Collins ◽  
C. R. Wronski ◽  
...  

A study has been carried out on the evolution of light induced defects in protocrystalline (diluted) a-Si:H films under 1 sun illumination. A room temperature reversal is observed in the photocurrents at 25°C, which is consistent with the relaxation in the recombination currents on corresponding p-i-n solar cells. It is also consistent with the pressure of “fast” states such as have been observed after high intensity illumination. Even with the limitations imposed by the relaxation in the light induced changes on the subgap absorption measurements, the evolution of distinctly different gap states centered around 0.9 and 1.15eV from the conduction band was identified. The kinetics of the electron occupied states, kN(E), at these two energies is compared with that of the neutral dangling bond (D0) densities as measured with electron spin resonance. Because of the similarity between the preliminary results of these kinetics it has not been possible to identify which states correspond to the D0 nor to draw any reliable conclusions about the nature of the different states.


2011 ◽  
Vol 1321 ◽  
Author(s):  
N. Uchida ◽  
T. Miyazaki ◽  
Y. Matsushita ◽  
K. Sameshima ◽  
T. Kanayama

ABSTRACTWe synthesized amorphous semiconductor films composed of Mo-encapsulating Si clusters (MoSin : n∼10) on solid substrates. The MoSi10 films had Si networks similar to hydrogenated amorphous Si and an optical gap of 1.5 eV. Electron spin resonance signals were not observed in the films indicating that dangling bonds of Si were terminated by Mo atoms. We fabricated thin-film-transistors using the MoSi10 film as a channel material. The electric field effect of the film was clearly observed. This suggests that the density of mid-gap states in the film is low enough for the field effect to occur.


2001 ◽  
Vol 664 ◽  
Author(s):  
J. Pearce ◽  
X. Niu ◽  
R. Koval ◽  
G. Ganguly ◽  
D. Carlson ◽  
...  

ABSTRACTLight induced changes to 1 sun degraded steady state (DSS) have been investigated on hydrogenated amorphous silicon (a-Si:H) p-i-n solar cells and corresponding films fabricated with and without hydrogen dilution of silane. Striking similarities are found for the degradation kinetics, between the electron mobility lifetime (μτ) products and the corresponding fill factors (FF). These correlations that exist for both intrinsic materials at temperatures between 25 and 100°C, are present for the DSS as well as in the kinetics, which exihibit distinctly different dependence on temperature. No such correlations are present between μτ, FF and densities of D0 defects, measured with subgap absorption α(E) at 1.2eV, and electron spin resonance (ESR). The creation of non-D0 defects is also clearly indicated by the temperature dependence of the kinetics and the changes in the shape of α(E) with the results suggesting the presence of more than one mechanism for the creation of light induced defects associated with the Staebler-Wronski effect (SWE).


Sign in / Sign up

Export Citation Format

Share Document