Effect of Fermi Level Position in Intrinsic a-Si:H on the Evolution of Defect States under Light Exposure.

2005 ◽  
Vol 862 ◽  
Author(s):  
M. Zeman ◽  
V. Nádaždy ◽  
R. Durný ◽  
J.W. Metselaar

AbstractThe evolution of the programmed defect-state distributions in intrinsic hydrogenated amorphous silicon (a-Si:H) due to light soaking was qualitatively determined from charge deep-level transient spectroscopy. The defect-state distribution in a-Si:H was programmed by applying a particular bias voltage on the metal-oxide-semiconductor structure while annealing the structure above the equilibration temperature. The programmed distributions simulate defect-state distributions in different parts of an actual a-Si:H solar cell, particularly in the intrinsic regions close to the p/i and i/n interfaces.The defect-state distribution in the bulk of the intrinsic layer is characterized by comparable contributions from the positively charged defect states above midgap, Dh, neutral states, Dz, and negatively charged states below midgap, De. In the programmedp-type (n-type) defect-state distribution there is an excess of the Dh (De) states. Light exposure modifies the p-type distribution that evolves to a broad distribution of states with a maximum around midgap. This distribution is dominated by Dz states with substantial contributions from Dh and De states. In case of n-type distribution light soaking only slightly influences the distribution by removing a part of the Dh states and by a small increase of Dz and De states.

2003 ◽  
Vol 762 ◽  
Author(s):  
M. Zeman ◽  
V. Nádaždy ◽  
R.A.C.M.M. van Swaaij ◽  
R. Durný ◽  
J.W. Metselaar

AbstractThe charge deep-level transient spectroscopy (Q-DLTS) experiments on undoped hydrogenated amorphous silicon (a-Si:H) demonstrate that during light soaking the states in the upper part of the gap disappear, while additional states around and below midgap are created. Since no direct correlation is observed in light-induced changes of the three groups of states that we identify from the Q-DLTS signal, we believe that we deal with three different types of defects. Positively charged states above midgap are related to a complex formed by a hydrogen molecule and a dangling bond. Negatively charged states below midgap are attributed to floating bonds. Various trends in the evolution of dark conductivity due to light soaking indicate that the kinetics of light-induced changes of the three gap-state components depend on their initial energy distributions and on the spectrum and intensity of light during exposure.


Coatings ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 206
Author(s):  
Jinhee Park ◽  
You Seung Rim ◽  
Pradeep Senanayake ◽  
Jiechen Wu ◽  
Dwight Streit

The characterization of defect states in a hydrothermally grown single crystal of ZnO was performed using deep-level transient spectroscopy in the temperature range of 77–340 K. The native intrinsic defect energy level within the ZnO band gap occurred in the depletion region of ZnO Schottky barrier diodes. A major defect level was observed, with a thermal activation energy of 0.27 eV (E3) within the defect state distribution from 0.1 to 0.57 eV below the conduction band minimum. We confirmed the maximum defect concentration to be 3.66 × 1016 cm−3 at 0.27 eV (E3). As a result, we clearly confirmed the distribution of density of defect states in the ZnO band gap.


1994 ◽  
Vol 336 ◽  
Author(s):  
Mehmet Güneş ◽  
R. W. Collins ◽  
C. R. Wronski

ABSTRACTSteady-state photoconductivity, sub-bandgap absorption and electron spin resonance (ESR) Measurements were carried out on annealed and light soaked intrinsic hydrogenated Amorphous silicon (a-Si:H) films. The experimental results were modeled using detailed numerical Model. The defect densities derived from the sub-bandgap absorption in the light soaked films were correlated with the ESR spin densities. Selfconsistent fitting of the data was obtained using a gap state distribution which consists of positively charged defect states above, negatively charged defect states below and neutral defect states at about Midgap. Both the annealed and the light degraded states are modeled using the same distribution of gap states whose densities increase upon light soaking with a slight increase in the ratio of the neutral to charged defect densities. These results on intrinsic a-Si:H are consistent with those of charged defect Models.


2004 ◽  
Vol 808 ◽  
Author(s):  
M. Zeman ◽  
V. Nádazdy ◽  
J.W. Metselaar

ABSTRACTComputer simulations of single-junction hydrogenated amorphous silicon (a-Si:H) solar cells with different thickness of the intrinsic layer were carried out in order to study the role of charge gap states in their light-induced degradation. It is demonstrated that it is the decrease of positively charged states above midgap, Dh, and the increase of neutral states around midgap,Dz, and negatively charged states below midgap, De in the intrinsic layer that result in a drop of performance of the solar cells due to light soaking. These changes in the gap states are in accordance with our recent experimental results from the charge deep-level transient spectroscopy on undoped a-Si:H. The experimentally observed changes in the dark and illuminated J-V curves and spectral response could not be simulated with the same set of input parameters by only increasing the defect-state density in the intrinsic layer.


2003 ◽  
Vol 766 ◽  
Author(s):  
V. Ligatchev ◽  
T.K.S. Wong ◽  
T.K. Goh ◽  
Rusli Suzhu Yu

AbstractDefect spectrum N(E) of porous organic dielectric (POD) films is studied with capacitance deep-level-transient-spectroscopy (C-DLTS) in the energy range up to 0.7 eV below conduction band bottom Ec. The POD films were prepared by spin coating onto 200mm p-type (1 – 10 Δcm) single-side polished silicon substrates followed by baking at 325°C on a hot plate and curing at 425°C in furnace. The film thickness is in the 5000 – 6000 Å range. The ‘sandwich’ -type NiCr/POD/p-Si/NiCr test structures showed both rectifying DC current-voltage characteristics and linear 1/C2 vs. DC reverse bias voltage. These confirm the applicability of the C-DLTS technique for defect spectrum deconvolution and the n-type conductivity of the studied films. Isochronal annealing (30 min in argon or 60 min in nitrogen) has been performed over the temperature range 300°C - 650°C. The N(E) distribution is only slightly affected by annealing in argon. However, the distribution depends strongly on the annealing temperature in nitrogen ambient. A strong N(E) peak at Ec – E = 0.55 – 0.60 eV is detected in all samples annealed in argon but this peak is practically absent in samples annealed in nitrogen at Ta < 480°C. On the other hand, two new peaks at Ec – E = 0.12 and 0.20 eV appear in the N(E) spectrum of the samples annealed in nitrogen at Ta = 650°C. The different features of the defect spectrum are attributed to different interactions of argon and nitrogen with dangling carbon bonds on the intra-pore surfaces.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1966
Author(s):  
Domenico Pellegrino ◽  
Lucia Calcagno ◽  
Massimo Zimbone ◽  
Salvatore Di Franco ◽  
Antonella Sciuto

In this study, 4H-SiC p–n junctions were irradiated with 700 keV He+ ions in the fluence range 1.0 × 1012 to 1.0 × 1015 ions/cm2. The effects of irradiation were investigated by current–voltage (I–V) and capacitance–voltage (C–V) measurements, while deep-level transient spectroscopy (DLTS) was used to study the traps introduced by irradiation defects. Modifications of the device’s electrical performances were observed after irradiation, and two fluence regimes were identified. In the low fluence range (≤1013 ions/cm2), I–V characteristics evidenced an increase in series resistance, which can be associated with the decrease in the dopant concentration, as also denoted by C–V measurements. In addition, the pre-exponential parameter of junction generation current increased with fluence due to the increase in point defect concentration. The main produced defect states were the Z1/2, RD1/2, and EH6/7 centers, whose concentrations increased with fluence. At high fluence (>1013 ions/cm2), I–V curves showed a strong decrease in the generation current, while DLTS evidenced a rearrangement of defects. The detailed electrical characterization of the p–n junction performed at different temperatures highlights the existence of conduction paths with peculiar electrical properties introduced by high fluence irradiation. The results suggest the formation of localized highly resistive regions (realized by agglomeration of point defects) in parallel with the main junction.


1998 ◽  
Vol 535 ◽  
Author(s):  
Daewon Kwon ◽  
R. J. Kaplar ◽  
J. J. Boeckl ◽  
S. A. Ringel ◽  
A. A. Allerman ◽  
...  

AbstractDeep level defects in MOCVD-grown, unintentionally doped p-type InGaAsN films lattice matched to GaAs were investigated using deep level transient spectroscopy (DLTS) measurements. As-grown p-InGaAsN showed broad DLTS spectra suggesting that there exists a broad distribution of defect states within the band-gap. Moreover, the trap densities exceeded 1015 cm−3. Cross sectional transmission electron microscopy (TEM) measurements showed no evidence for threading dislocations within the TEM resolution limit of 107 cm−2. A set of samples was annealed after growth for 1800 seconds at 650 °C to investigate the thermal stability of the traps. The DLTS spectra of the annealed samples simplified considerably, revealing three distinct hole trap levels with energy levels of 0.10 eV, 0.23 eV, and 0.48 eV above the valence band edge with trap concentrations of 3.5 × 1014 cm−3, 3.8 × 1014 cm−3, and 8.2 × 1014 cm−3, respectively. Comparison of as-grown and annealed DLTS spectra showed that post-growth annealing effectively reduced the total trap concentration by an order of magnitude across the bandgap. However, the concentration of a trap with an energy level of 0.48 eV was not affected by annealing indicating a higher thermal stability for this trap as compared with the overall distribution of shallow and deep traps.


2018 ◽  
Vol 83 (1) ◽  
pp. 10101 ◽  
Author(s):  
Zeeshan Najam Khan ◽  
Ahmed Shuja ◽  
Muhammad Ali ◽  
Shoaib Alam

A combination of two powerful techniques, namely, charge deep level transient spectroscopy and spectroscopic ellipsometry is employed on atomic layer deposited Si-metal oxide semiconductor capacitors (MOSCAPs) to investigate the energy efficiency of the physical process. Ultra-thin TiN/HfSiO acted as gate-dielectric stack on Si substrate was carefully subjected to rapid thermal processing and subsequent spectroscopic measurements to determine the transient behaviour of charges and electro-optical characteristics. Some key parameters such as trap concentration, activation energy required to surmount the traps, capture cross section, refractive index and extinction coefficient are found to play an important role in order to assess the energy efficiency of the devices both in terms of post-process quality of the retained surface and residual efficiency of the process by virtue of dynamics at atomistic scales. The results may provide a useful insight to the Si manufacturing protocols at ever decreasing nodes with desirable energy efficiency.


Sign in / Sign up

Export Citation Format

Share Document