Profiling the Deep Trap Level in the Semiconductor Heterostructures by Small-Pulse Deep Level Transient Spectroscopy

1994 ◽  
Vol 338 ◽  
Author(s):  
Zhang Rong ◽  
Yang Kai ◽  
Qing Guoyi ◽  
Shi Yi ◽  
Gu Shulin ◽  
...  

ABSTRACTIn this paper we report for the first time theoretical and experimental study on smallpulse DLTS measurements of deep levels in semiconductor heterostructures. A theoretical model has been developed on the basis of the Schodinger and Poisson's electrostatic equation. Distribution of charge density in the superlattice has been considered, especially transferred charges in the “narrow gap” sublayers. The calculated results indicate that tinder the 1017/cm3 doping condition, a 30mV small pulse corresponds to a 2nm “sampling space window”, it is enough to detect special signal of deep levels in each sublayer in the semiconductor heterostructures. A SiGe/Si sample has been measured by the small-pulse DLTS. The experimental results agree well with the theoretical prediction and show that the small-pulse DLTS is a good method to study deep levels in the semiconductor heterostructures.

Author(s):  
Nataliya Mitina ◽  
Vladimir Krylov

The results of an experiment to determine the activation energy of a deep level in a gallium arsenide mesastructure, obtained by the method of capacitive deep levels transient spectroscopy with data processing according to the Oreshkin model and Lang model, are considered.


1994 ◽  
Vol 08 (13) ◽  
pp. 1765-1779 ◽  
Author(s):  
V. NÁDAŽDY ◽  
I. THURZO

Complementarity of the capacitance and charge deep level transient spectroscopy (DLTS) is the idea which led us to an advanced method for profiling trap levels in semiconductors. This unifying approach to the space-charge spectroscopy, on grounds of applying the small-amplitude-filling pulse mode and evaluating the trapped charge balance, allows one to implement it in practice while using currently available instrumentation. A simple formalism is sufficient to obtain the demanded trap level depth. The usefulness of this method is demonstrated on bulk traps found in two different metal-insulator-semiconductor (MIS) capacitors. We propose also a new experimental technique providing the option of a direct determination of the trap depth from a single temperature scan. In addition, we found an expression for the relative detection sensitivity of the capacitance DLTS and justified quantitatively the earlier reported improved relative sensitivity of the charge transient spectroscopy.


1997 ◽  
Vol 484 ◽  
Author(s):  
A. Y. Du ◽  
M. F. Li ◽  
T. C. Chong ◽  
Z. Zhang

AbstractDislocations and traps in MBE grown p-InGaAs/GaAs lattice-mismatched heterostructures are investigated by Cross-section Transmission Electron Microscopy (XTEM), Deep Level Transient Spectroscopy (DLTS) and Photo-luminescence (PL). The misfit dislocations and the threading dislocations observed by XTEM in different samples with different In mole fractions and different InGaAs layer thickness generally satisfy the Dodson-Tsao's plastic flow critical layer thickness curve. The threading dislocations in bulk layers introduce three hole trap levels HI, H2 and H5 with DLTS activation energies of 0.32 eV, 0.40 eV, 0.88 eV, respectively, and one electron trap El with DLTS activation energy of 0.54 eV. The misfit dislocations in relaxed InGaAs/GaAs interface induce a hole trap level H4 with DLTS activation energy between the range of 0.67–0.73 eV. All dislocation induced traps are nonradiative recombination centers which greatly degrade the optical property of the InGaAs/GaAs layers.


1987 ◽  
Vol 104 ◽  
Author(s):  
A. Ben Cherifa ◽  
R. Azoulay ◽  
G. Guillot

ABSTRACTWe have studied by means of deep level transient spectroscopy and photocapacitance measurements deep electron traps in undoped Ga1−xAlxAs of n-type grown by metalorganic chemical vapor deposition with 0≤x≤ 0.3. A dominant deep electron trap is detected in the series of alloys. Its activation energy is found at EC-0.8 eV in GaAs and it increases with x. Its concentration is found nearly independent of x. For the first time we observed for this level in the Ga1−xAlxAs alloys, the photocapacitance quenching effect typical for the EL2 defect in GaAs thus confirming clearly that EL2 is also created in MOCVD Ga1−xAlxAs.


1993 ◽  
Vol 302 ◽  
Author(s):  
C Eiche ◽  
M Fiederle ◽  
J Weese ◽  
D Maier ◽  
D Ebling ◽  
...  

ABSTRACTDeep levels have a great influence on the recombination behavior of the free carriers in semiconductors. For several years PICTS has been used to investigate the deep levels in high resistivity material such as GaAs or CdTe used in detector applications. An important feature of the PICTS measurements is the analysis of the current transients after pulse excitation. We propose using a new method based on Tikhonov regularization. This method was implemented in the program FTIKREG (Fast Tikhonov Regularization) by one of the authors. The superior resolution of the regularization method in comparison to conventional techniques is shown using simulated data. Moreover, the method is applied to investigate deep levels in CdTe:Cl, SI-GaAs and GaAs:Cr samples used for room temperature radiation detectors. A relation between deep level properties and detector performance is proposed.


Sign in / Sign up

Export Citation Format

Share Document