Effects of Post-Deposition Processing on the Ultimate Grain Size in Metastable Semiconductor Thin Films to be Used in IR Detectors

1994 ◽  
Vol 343 ◽  
Author(s):  
Susanne M Lee

ABSTRACTThrough post-deposition annealing in a differential scanning calorimeter (DSC), we have manufactured both thin (200 nm) and bulk (8000 nm) single phase films of crystalline Ge1–xSnx, using rf sputtering. The Sn concentrations produced ranged up to 31 at.%, well beyond the solid solubility limit of this system. There was a marked difference, in the asdeposited structure, between thick and thin films produced under the same deposition conditions. Quantitative models for both systems are given in this paper and were deduced frorn DSC measurements in conjunction with electron microscopy. The metastable crystalline state in the thin films formed by nucleation and growth from an amorphous phase; whereas in the thick films, the desired phase was already present in the as-deposited films and only growth of preexisting grains was observed upon post-deposition annealing. When annealed to high temperature, the Sn phase separates from the alloys and we postulate here that it does so by nucleation and growth of β-Sn. With this hypothesis, the Sn separation in the 8000 nm thick films was accurately modeled by a two-mechanism process, however, in the 200 nm thick films, only one phase separation mechanism was necessary to accurately fit the data. Both models were corroborated by the subsequent melting behavior of the phase separated Sn which, though it varied depending on the sample being measured, always exhibited a melting endotherm starting 25–35°C lower than the bulk melting temperature of Sn. Speculation on the reasons for this are presented.

2016 ◽  
Vol 4 (33) ◽  
pp. 7846-7852 ◽  
Author(s):  
Sajjad Hussain ◽  
Muhammad Farooq Khan ◽  
Muhammad Arslan Shehzad ◽  
Dhanasekaran Vikraman ◽  
Muhammad Zahir Iqbal ◽  
...  

Synthesis of large-area WS2 films by direct sulfurization of RF-sputtered WO3 thin films on insulating substrates.


2015 ◽  
Vol 45 (1) ◽  
pp. 499-508 ◽  
Author(s):  
R.E. Banai ◽  
J.C. Cordell ◽  
G. Lindwall ◽  
N.J. Tanen ◽  
S.-L. Shang ◽  
...  

1995 ◽  
Vol 398 ◽  
Author(s):  
Joshua W. Kriesel ◽  
Susanne M. Lee

ABSTRACTUsing rf sputtering and post-deposition annealing in a differential scanning calorimeter (DSC), we manufactured bulk (4000 nm) films of crystalline Ge0.83Sn0.17. This Sn concentration is much greater than the solid solubility limit of Sn in Ge (x ≤ 0.01). Continued annealing thermally induces Sn phase separation from the alloy, limiting the ultimate attainable grain size in the metastable crystals. We examine, here, the mechanisms and kinetics of the processes limiting the size of the Ge0.83Sn0.17 polycrystals. From a combination of DSC, electron microprobe, and x-ray diffraction (XRD) measurements, we propose phase transformation mechanisms corresponding to crystallization of amorphous Ge0.83Sn0.17, crystallization of an as-yet unidentified phase of Sn, and phase separation of Sn from the Ge1-xSnx crystals. We were unable to observe the unidentified phase of Sn in XRD, but the phase must be present in the material to account for the quantitative discrepancies (as much as 8 at.%) in Sn percentages determined from each of the DSC, XRD, and electron microprobe measurements. Our models for the various transformation kinetics were corroborated by the subsequent phase-separated Sn melting behavior observed in the DSC: two Sn melting endotherms, one of which was 20–100°C lower than the bulk melting temperature of Sn. This depressed temperature endotherm we speculate represents liquefaction of nanometer-sized (β–Sn clusters.


1992 ◽  
Vol 275 ◽  
Author(s):  
G. Cui ◽  
C. P. Beetz ◽  
B. A. Lincoln ◽  
P. S. Kirlin

ABSTRACTThe deposition of in-situ YBa2CU3O7-δ Superconducting films on polycrystalline diamond thin films has been demonstrated for the first time. Three different composite buffer layer systems have been explored for this purpose: (1) Diamond/Zr/YSZ/YBCO, (2) Diamond/Si3N4/YSZ/YBCO, and (3) Diamond/SiO2/YSZ/YBCO. The Zr was deposited by dc sputtering on the diamond films at 450 to 820 °C. The YSZ was deposited by reactive on-axis rf sputtering at 680 to 750 °C. The Si3N4 and SiO2 were also deposited by on-axis rf sputtering at 400 to 700 °C. YBCO films were grown on the buffer layers by off-axis rf sputtering at substrate temperatures between 690 °C and 750 °C. In all cases, the as-deposited YBCO films were superconducting above 77 K. This demonstration enables the fabrication of low heat capacity, fast response time bolometric IR detectors and paves the way for the use of HTSC on diamond for interconnect layers in multichip modules.


2009 ◽  
Author(s):  
Wei-En Fu ◽  
Yong-Qing Chang ◽  
Yi-Ching Chen ◽  
Erik M. Secula ◽  
David G. Seiler ◽  
...  

2001 ◽  
Vol 670 ◽  
Author(s):  
Akira Nishiyama ◽  
Akio Kaneko ◽  
Masato Koyama ◽  
Yoshiki Kamata ◽  
Ikuo Fujiwara ◽  
...  

ABSTRACTTi-Si-O films were sputter deposited from TiO2+SiO2 composite targets with various SiO2 content. The phase separation occurred for every SiO2 content used in this experiment (from 14% to 75%) and it has been revealed that nanocrystalline (TiO2)1-x(SiO2)x films in which anatase TiO2 forms tiny grains were obtained when x in the film is larger than 0.26. The tiny grain was effective for suppressing the thermal grooving phenomenon of the thin films by the post deposition annealing which leads to the leakage current increase. The dielectric constant of the nanocrystalline film was varied with the SiO2 content from the value of the bulk anatase to SiO2.


2017 ◽  
Vol 30 (1) ◽  
pp. 1-5
Author(s):  
Young-Hwan Song ◽  
Tae-Young Eom ◽  
Sung-Bo Heo ◽  
Jun-Ho Kim ◽  
Daeil Kim

Sign in / Sign up

Export Citation Format

Share Document