Controlled Formation of Buried Layers of Carbon

1994 ◽  
Vol 349 ◽  
Author(s):  
D. Ila ◽  
R. L. Zimmerman ◽  
G. M. Jenkins

ABSTRACTPartially cured and cured PF-resin samples were prepared at 150°C, 170°C and at 200°C in an inert environment and then bombarded by MeV ion beams using protons, alphas and nitrogen. Using low ion beam current density, 100 to 500 pA/mm2 for the nitrogen ions, 10 to 20 nA/mm2 for the alpha ions, and 50 to 500 nA/mm2 for protons, we have produced buried carbon layers without breakdown i.e., crack formation. The thicknesses of the carbon layers produced were of the order of a few tens of nanometers at a depth of a few nanometers to several micrometers depending on the energy, the type of bombarding ions and the curing temperature of the precursor. The electrical resistivity of these layers was measured in situ and was reduced from 109 Ω-cm to 10 Ω-cm. The lowest resistivity, 10 Ω-cm, was measured in the alpha bombarded, 150°C heat-treated resin. The carbonized volumes were analyzed by Raman microprobe spectroscopy which showed that the strongest graphitic (G-line) and distorted (D-line) Raman signals observed were from the nitrogen and alpha irradiated samples.

In s.i.m.s. the sample surface is ion bombarded and the emitted secondary ions are mass analysed. When used in the static mode with very low primary ion beam current densities (10 -11 A/mm 2 ), the technique analyses the outermost atomic layers with the following advantages (Benninghoven 1973, I975): the structural—chemical nature of the surface may be deduced from the masses of the ejected ionized clusters of atoms; detection of hydrogen and its compounds is possible; sensitivity is extremely high (10 -6 monolayer) for a number of elements. Composition profiles are obtained by increasing the primary beam current density (dynamic mode) or by combining the technique in the static mode with ion beam machining with a separate, more powerful ion source. The application of static s.i.m.s. in metallurgy has been explored by analysing a variety of alloy surfaces after fabrication procedures in relation to surface quality and subsequent performance. In a copper—silver eutectic alloy braze it was found that the composition of the solid surface depended markedly on its pretreatment. Generally there was a surface enrichment of copper relative to silver in melting processes while sawing and polishing enriched the surface in silver


1988 ◽  
Vol 126 ◽  
Author(s):  
John F. Knudsen ◽  
R. C. Bowman ◽  
P. M. Adams ◽  
R. Newman ◽  
J. P. Hurrell ◽  
...  

ABSTRACTEpitaxial regrowth of deposited amorphous silicon has been previously described utilizing ion implantation amorphization, ion mixing and thermal anneal. This paper evaluates the effects of these process steps on crystalline quality utilizing Rutherford Backscattering (RBS), x-ray diffraction rocking curves and Raman scattering.In situ (during implantation) regrowth results in defective crystallinity. In contrast, when there is no in situ regrowth, the post anneal crystallinity is equivalent by RBS and x-ray evaluation to virgin single crystal wafers. In situ regrowth is most pronounced during the high beam current ion mixing type implants which produce wafer temperatures of about 250°C. The final crystalline quality which results from different sequences of amorphization and ion mixing implants, is strongly dependent upon the amount of in situ regrowth which has occurred. The greater the in situ regrowth the poorer the final crystalline quality.


1989 ◽  
Vol 154 ◽  
Author(s):  
P.H. Lu ◽  
R.A. Moody ◽  
I.H. Loh

AbstractInsulating polymeric sheets were made electrically conductive by ion implantation. The effects of implantation parameters, such as ion species, dose, energy, beam current density, and substrate temperature, on the resultant sheet resistivities were investigated. Surface structural changes of implanted polymers were evaluated by X-ray photoelectron spectroscopy (XPS), Rutherford backscattering spectroscopy (RBS), and Fourier transform infared spectroscopy (FTIR). Electron spin resonance (ESR) and temperature dependent resistivity measurements were performed to explore the conduction mechanisms of implanted polymers. The results indicate that ion beam modification of polymers proceeds via a similar mechanism as high temperature pyrolysis. The resultant carbon-enriched materials which can be described by the conducting grain model.


2019 ◽  
Vol 28 (6) ◽  
pp. 065010
Author(s):  
Yoichi Hirano ◽  
Yutaka Fujiwara ◽  
Satoru Kiyama ◽  
Yamato Adachi ◽  
Hajime Sakakita

2009 ◽  
Vol 16 (5) ◽  
pp. 056701 ◽  
Author(s):  
A. B. Sefkow ◽  
R. C. Davidson ◽  
E. P. Gilson ◽  
I. D. Kaganovich ◽  
A. Anders ◽  
...  

1990 ◽  
Vol 181 ◽  
Author(s):  
Khanh Q. Tran ◽  
Yuuichi Madokoro ◽  
Tohru Ishitani ◽  
Cary Y. Yang

ABSTRACT30-keV focused Ga+ ion beam was used for induced deposition of small-area tungsten thin films from W(CO)6 on Si and SiO2. Deposition yield, calculated assuming pure tungsten depositions, depends on dwell time (beam diameter/scan speed) and beam current density. High current density and/or long dwell time are known to cause low deposition yield because of the depletion of adsorbed gas molecules during ion beam irradiation. Based on a model taking this effect into account, numerical fitting was carried out. The reaction cross-section was estimated to be 1.4 × 10−14 cm2. For doses below 1017 ions/cm2, film resistivity decreases with increasing dose. This was confirmed for several dwell times. However, for doses above 1017 ions/cm2, film resistivity remains independent of dose. In this “high”-dose range, variation of beam current density has little effect on film resistivity. AES analyses revealed a consistency between film composition and resistivity. For a “high”-dose film with a resistivity of 190 μΩ-cm, the approximate tungsten content was 50 at%.


2009 ◽  
Vol 80 (12) ◽  
pp. 125102 ◽  
Author(s):  
Kotaro Nagoshi ◽  
Junki Honda ◽  
Hiroyuki Sakaue ◽  
Takayuki Takahagi ◽  
Hitoshi Suzuki

Sign in / Sign up

Export Citation Format

Share Document