Rietveld Analysis of Phase Separation in Annealed and Leach Tested Cm-Doped Perovskite

1994 ◽  
Vol 353 ◽  
Author(s):  
T. J. White ◽  
H. Mitamura ◽  
T. Tsuboi

AbstractA quantitative powder X-ray diffraction study was made of actinide doped perovskite of bulk composition Ca0.98919An0.01081Ti0.98919Al0.01081O3 where An corresponded to approximately equimolar proportions of Cm-244 and Pu-240. Sections of this sample accumulated irradiation doses up to 7.51 × 1017 alpha decay events per gram (± g−1). The damaged samples were treated in two ways. First, to establish the critical temperature for structural recovery under the reducing conditions of geological repositories, isochronal annealing was carried out at 600, 800, 1000 and 1100˚C for 12 hours in graphite crucibles. Two groups of perovskites that had previously sustained doses of 4.5 × 1017 and 7.4 × 1017 ± g−1 were tested in this way. For the former group, these conditions resulted in up to 9 weight percent (wt%) of available actinide separating as a fluorite-type dioxide near the perovskite surface. In the latter group, calcium was reduced to the metal which vaporised, leaving an excess of refractory titanium that crystalised as rutile. Second, material which had sustained doses of 1.6–4.0 × 1017 alpha decays per gram was subjected to an MCC-1 leach test for two months at 90˚C using a pH ∼ 2 solution. Under these conditions surficial perovskite dissolved congruently to release calcium into solution while the titanium reprecipitated as anatase. The implications of these results for the ultimate disposal of perovskite-bearing polyphase nuclear waste ceramics are considered.

2003 ◽  
Vol 807 ◽  
Author(s):  
Boris E. Burakov ◽  
Maria A. Yagovkina ◽  
Maria V. Zamoryanskaya ◽  
Alexander A. Kitsay ◽  
Vladimir M. Garbuzov ◽  
...  

ABSTRACTTo investigate the resistance of cubic zirconia to accelerated radiation damage, which simulates effects of long term storage, 238Pu-doped polycrystalline samples of cubic zirconia, (Zr,Gd,Pu)O2, were obtained and studied using X-ray diffraction analysis (XRD), electron probe microanalysis (EPMA), optical and scanning electron microscopy (SEM), and modified MCC-1 static leach test. The ceramic material was characterized by the following chemical composition (from EPMA in wt.% element): Zr = 50.2, Gd = 15.4, Pu = 12.2. This corresponds to the estimated formula, Zr0.79Gd0.14Pu0.07O1.99. The content of 238Pu estimated was approximately 9.9 wt.%. The XRD measurements were carried out after the following cumulative doses (in alpha decay/m3 × 1023): 3, 27, 62, 110, 134, 188, 234, and 277. Even after extremely high self-irradiation, cubic zirconia retained its crystalline structure. All XRD analyses showed no phases other than a cubic fluorite-type structure. The following results of normalized Pu mass loss (NL, in g/m2, without correction for ceramic porosity) were obtained from static leach tests (in deionized water at 90°C for 28 days) for 4 cumulative doses (in alpha decay/m3 × 1023):The results obtained confirm the high resistance of cubic zirconia to self-irradiation. This allows us to consider zirconia-based ceramic as the universal material that is suitable for actinide transmutation and geological disposal.


1997 ◽  
Vol 12 (2) ◽  
pp. 318-321 ◽  
Author(s):  
G. Fagherazzi ◽  
P. Canton ◽  
A. Benedetti ◽  
F. Pinna ◽  
G. Mariotto ◽  
...  

Using x-ray Rietveld analysis the fcc (fluorite-type) structure of a Na-containing nanocrystalline zirconia powder (9.5 nm estimated crystallite size) obtained by precipitation and calcination has been confirmed. The result shows that conventional x-ray diffraction techniques can distinguish the cubic crystallographic form of ZrO2 from the tetragonal one in nanosized powders. These conclusions are supported by independent Raman scattering experiments.


1992 ◽  
Vol 294 ◽  
Author(s):  
T.J. White ◽  
H. Mitamura

ABSTRACTQuantitative powder X-ray diffraction was used to analyse the phase assemblages of titanate nuclear waste ceramics doped with 244Cm and accumulating a-decay doses up to 1.24 × 1018 alpha-decay-events g−1. Among the Cm-bearing phases, perovskite is more susceptible to damage than zirconolite. Phases devoid of curium (hollandite and freudenbergite) experience a flux of ionizing radiation, and may also undergo radiation-induced structural degradation. The analysis demonstrated that at a dose of 1.24 × 1018 alpha-decay-events g−1 approximately 20 wt% of the waste phases remain aperiodic after annealing for 2 hours at 800°C.


2021 ◽  
Vol 52 (5) ◽  
pp. 1812-1825
Author(s):  
Sen Lin ◽  
Ulrika Borggren ◽  
Andreas Stark ◽  
Annika Borgenstam ◽  
Wangzhong Mu ◽  
...  

AbstractIn-situ high-energy X-ray diffraction experiments with high temporal resolution during rapid cooling (280 °C s−1) and isothermal heat treatments (at 450 °C, 500 °C, and 550 °C for 30 minutes) were performed to study austenite decomposition in two commercial high-strength low-alloy steels. The rapid phase transformations occurring in these types of steels are investigated for the first time in-situ, aiding a detailed analysis of the austenite decomposition kinetics. For the low hardenability steel with main composition Fe-0.08C-1.7Mn-0.403Si-0.303Cr in weight percent, austenite decomposition to polygonal ferrite and bainite occurs already during the initial cooling. However, for the high hardenability steel with main composition Fe-0.08C-1.79Mn-0.182Si-0.757Cr-0.094Mo in weight percent, the austenite decomposition kinetics is retarded, chiefly by the Mo addition, and therefore mainly bainitic transformation occurs during isothermal holding; the bainitic transformation rate at the isothermal holding is clearly enhanced by lowered temperature from 550 °C to 500 °C and 450 °C. During prolonged isothermal holding, carbide formation leads to decreased austenite carbon content and promotes continued bainitic ferrite formation. Moreover, at prolonged isothermal holding at higher temperatures some degenerate pearlite form.


2021 ◽  
Vol 7 (3) ◽  
pp. 42
Author(s):  
Jiba N. Dahal ◽  
Kalangala Sikkanther Syed Ali ◽  
Sanjay R. Mishra

Intermetallic compounds of Dy2Fe16Ga1−xNbx (x = 0.0 to 1.00) were synthesized by arc melting. Samples were investigated for structural, magnetic, and hyperfine properties using X-ray diffraction, vibration sample magnetometer, and Mossbauer spectrometer, respectively. The Rietveld analysis of room temperature X-ray diffraction data shows that all the samples were crystallized in Th2Fe17 structure. The unit cell volume of alloys increased linearly with an increase in Nb content. The maximum Curie temperature Tc ~523 K for x = 0.6 sample is higher than Tc = 153 K of Dy2Fe17. The saturation magnetization decreased linearly with increasing Nb content from 61.57 emu/g for x = 0.0 to 42.46 emu/g for x = 1.0. The Mössbauer spectra and Rietveld analysis showed a small amount of DyFe3 and NbFe2 secondary phases at x = 1.0. The hyperfine field of Dy2Fe16Ga1−xNbx decreased while the isomer shift values increased with the Nb content. The observed increase in isomer shift may have resulted from the decrease in s electron density due to the unit cell volume expansion. The substantial increase in Tc of thus prepared intermetallic compounds is expected to have implications in magnets used for high-temperature applications.


2003 ◽  
Vol 807 ◽  
Author(s):  
T. Advocat ◽  
F. Jorion ◽  
T. Marcillat ◽  
G. Leturcq ◽  
X. Deschanels ◽  
...  

ABSTRACTZirconolite is a potential inorganic matrix that is currently investigated in France, in the framework of the 1991 radioactive waste management law, with a view to provide durable containment of the trivalent and tetravalent minor actinides like neptunium, curium, americium and small quantities of unrecyclable plutonium separated from other nuclear waste. To confirm the actinide loading capacity of the zirconolite calcium site and to study the physical and chemical stability of this type of ceramic when subjected to alpha self-irradiation, zirconolite ceramic pellets were fabricated with 10 wt% plutonium oxide (isotope 239 or 238). The 55 pellets are dense (> 93.3% of the theoretical density on average) and free of cracks. They are characterized by a grain size of between 10 and 20 micrometers. X-ray diffraction analyses confirmed the presence of the zirconolite 2M crystalline structure.


2011 ◽  
Vol 75 (4) ◽  
pp. 2393-2399 ◽  
Author(s):  
T. Beirau ◽  
C. Paulmann ◽  
U. Bismayer

AbstractAllanite is a common accessory mineral in igneous rocks. Allanite becomes metamict over geological time-scales as a result of the α-decay of radioactive elements in the crystal structure. This study focuses on the recrystallization of metamict allanite from Savvushka, Russia. The structural recovery produced by annealing was investigated by X-ray powder diffraction, single-crystal synchrotron X-ray diffraction and infrared spectroscopy. A kinetic analysis is presented that shows that the recrystallization process proceeds by at least two different mechanisms.


Ceramics ◽  
2018 ◽  
Vol 1 (2) ◽  
pp. 343-352 ◽  
Author(s):  
Reginaldo Muccillo ◽  
Daniel de Florio ◽  
Eliana Muccillo

Compositions of (ZrO2)0.92(Y2O3)0.08 (zirconia: 8 mol % yttria—8YSZ) and (CeO2)0.8(Sm2O3)0.2 (ceria: 20 mol % samaria—SDC20) ceramic powders were prepared by attrition milling to form an equimolar powder mixture, followed by uniaxial and isostatic pressing. The pellets were quenched to room temperature from 1200 °C, 1300 °C, 1400 °C and 1500 °C to freeze the defects configuration attained at those temperatures. X-ray diffraction analyses, performed in all quenched pellets, show the evolution of the two (8YSZ and SDC20) cubic fluorite structural phases to a single phase at 1500 °C, identified by Rietveld analysis as a tetragonal phase. Impedance spectroscopy analyses were carried out in pellets either quenched or slowly cooled from 1500 °C. Heating the quenched pellets to 1000 °C decreases the electrical resistivity while it increases in the slowly cooled pellets; the decrease is ascribed to annealing of defects created by lattice micro-tensions during quenching while the increase to partial destabilization of the tetragonal phase.


1999 ◽  
Vol 556 ◽  
Author(s):  
P. E. Raison ◽  
R. G. Haire ◽  
T. Sato ◽  
T. Ogawa

AbstractPolycrystalline pyrochlore oxides consisting of selected f elements (lanthanides and actinides) and Zr and Hf have been prepared and characterized. Characterization to date has been primarily by X-ray diffraction, both at room and at elevated temperatures. Initial studies concentrated on selected lanthanides and the Np, Pu and Am analogs (reported here) but have been extended to the other actinide elements through Cf. Data from these studies have been used to establish a systematic correlation regarding the fundamental materials science of these particular pyrochlores and structurally related fluorite-type dioxides. In addition to pursuing their materials science, we have addressed some potential technological applications for these materials. Some of the latter concern: (1) immobilization matrices; (2) materials for transmutation concepts; and (3) special nuclear fuel forms that can minimize the generation of nuclear wastes. For f elements that display both a III and IV oxidation state in oxide matrices, the synthetic path required for producing the desired pyrochlore oxide is dictated by their pseudo-oxidation potential the stability of the compound towards oxygen uptake. For the f elements that display an oxidationreduction cycle for pyrochlore-dioxide solid solution, X-ray diffraction can be used to identify the composition in the oxidation-reduction cycle, the oxygen stoichiometry and/or the composition. This paper concentrates on the Np, Pu and Am systems, and addresses the above aspects, the role of the crystal matrix in controlling the ceramic products as well as discussingsome custom-tailored materials.


Sign in / Sign up

Export Citation Format

Share Document