Influence of Aging Processes on Adhesion Properties of Metallic and Oxidic Thin Films

1994 ◽  
Vol 356 ◽  
Author(s):  
C. R. Ottermann ◽  
Y. Tomita ◽  
M. Ishiyama ◽  
K. Bange

AbstractAdhesion of oxidic and metallic films with thicknesses between 40 nm and 350 nm has been investigated by means of a scratch-test method based on a vibrating diamond micro-indenter. SiO2 and TiO2 films are precipitated on fused silica substrates by sol-gel techniques (SG), reactive evaporation (RE), reactive low-voltage ion plating (IP), and plasma impulse chemical vapour deposition (PICVD), and Cr-layers are produced by rf magnetron sputtering (SP). The influence of aging effects on film adhesion is investigated in respect of several conditions, like storage under ambient surroundings with differences in relative humidity or temperature treatment. A method is presented allowing control of the long-term stability of the scratch-test conditions. Temperature treatment up to 600 °C is found to have the most significant impact on adhesion properties. Adhesion increases for some SiO2 films, whereas for TiO2 layers an opposite behavior is observed. Here, the adhesion of the originally amorphous titania films is reduced due to the phase transition to polycrystalline anatase, which correlates with a significant increase in film stress.

1996 ◽  
Vol 436 ◽  
Author(s):  
C. R. Ottermann ◽  
S. U. Fassbender ◽  
W. Arnold ◽  
K. Bange

AbstractNonlinear mechanical properties of layered systems of Ta2O5 and TiO2 films deposited on fused silica by reactive evaporation (RE), reactive ion plating (IP) and spin coating (SC) are investigated by means of an ultrasonic technique. The coatings with thickness of 100 nm possess differences in density and crystal structure, due to the different deposition conditions. The nonlinear acoustic response of the film/substrate systems depends on film material. Differences are observed in respect to film density as obtained by the alternate deposition methods. The origin of the differences in nonlinear acoustic response of the samples is discussed. The results are correlated to adhesion properties of the films determined by a scratch-test method.


1993 ◽  
Vol 308 ◽  
Author(s):  
C. Ottermann ◽  
N. Tadokoro ◽  
Y. Tomita ◽  
K. Bange

ABSTRACTAdhesion of Cr, SiO2, TiO2 and Ta2O5 films with thicknesses between 40 nm and 380 nm has been investigated using a new scratch-test method based on a vibrating diamond micro-indenter. The oxide films are produced on different substrates by sol-gel technique (SG), reactive evaporation (RE), reactive ion plating (IP) and plasma impulse chemical vapor deposition (PICVD); Cr-layers are deposited by sputtering (SP) on quartz. Large variations in adhesion are found for different coating techniques and deposition conditions, especially the substrate temperature. The adhesion can be correlated with microscopic properties in the film-substrate interface where differences are analyzed in term of hydrogen content, film growth and density. The adhesion is also connected with other macroscopic film quantities.


2011 ◽  
Vol 493-494 ◽  
pp. 508-512 ◽  
Author(s):  
Ill Yong Kim ◽  
K. Nomura ◽  
Koichi Kikuta ◽  
J. Ohta ◽  
T. Tokuda ◽  
...  

For the purpose of bioinert coating on electronic devices, we developed the non-hydrolytic sol-gel derived organic-inorganic hybrid materials by addition of epoxy groups which can adhere strongly to the surface of electronic silicon device. The adhesion and chemical properties of hybrids were investigated as a function of epoxy group contents. The hybrids were prepared from 3-metacrloxypropyltrimethoxysilane (MPTS) and 3-glycidoxypropyltrimethoxysilane (GPTS) and diphenylsilanediol. The transparent hybrids were obtained after curing by UV irradiation. The adhesion properties of the hybrids were estimated by the maximum load to resist in a scratch test. The adhesion property of the hybrids increased with addition of GPTS and the highest adhesion was obtained from the hybrid with 5-10 mol% of GPTS. From the element analysis, Si concentrations of all the solutions were less than 2 mM after soaking for 7 d. The Si concentrations were not changed with increasing soaking period. The addition of epoxy groups is effective on improvement of adhesion property of the silica-based hybrid without loosening its chemical stability.


Author(s):  
E. F. Lindsey ◽  
C. W. Price ◽  
E. L. Pierce ◽  
E. J. Hsieh

Columnar structures produced by DC magnetron sputtering can be altered by using RF biased sputtering or by exposing the film to nitrogen pulses during sputtering, and these techniques are being evaluated to refine the grain structure in sputtered beryllium films deposited on fused silica substrates. Beryllium is brittle, and fractures in sputtered beryllium films tend to be intergranular; therefore, a convenient technique to analyze grain structure in these films is to fracture the coated specimens and examine them in an SEM. However, fine structure in sputtered deposits is difficult to image in an SEM, and both the low density and the low secondary electron emission coefficient of beryllium seriously compound this problem. Secondary electron emission can be improved by coating beryllium with Au or Au-Pd, and coating also was required to overcome severe charging of the fused silica substrate even at low voltage. The coating structure can obliterate much of the fine structure in beryllium films, but reasonable results were obtained by using the high-resolution capability of an Hitachi S-800 SEM and either ion-beam coating with Au-Pd or carbon coating by thermal evaporation.


Optik ◽  
2021 ◽  
pp. 167259
Author(s):  
Wenfeng Sun ◽  
Xia Xiang ◽  
Bo Li ◽  
Xiang Dong ◽  
Xiaolong Jiang ◽  
...  

2013 ◽  
Vol 481 ◽  
pp. 133-136 ◽  
Author(s):  
T.N. Myasoedova ◽  
G.E. Yalovega ◽  
N.K. Plugotarenko ◽  
M. Brzhezinskaya ◽  
V.V. Petrov ◽  
...  

Copper oxides films as promising materials for gas sensors applications were studied. Copper oxide films were deposited onto Si/SiO2substrates using a citrate sol-gel method with the subsequent temperature treatment at 150-5000C. These films were characterized by means of secondary electron microscopy (SEM) and X-ray-absorption near-edge structure (XANES) spectroscopy. The prepared films were utilized in NO2sensors. The dependences of the NO2response on the operating temperature and NO2concentration (10-200 ppm) were investigated. The maximum NO2response was achieved for the film annealed at 2500C.


2002 ◽  
Vol 96 (1) ◽  
pp. 69
Author(s):  
Huang Yanqiu ◽  
Liu Meidong ◽  
Zeng Yike ◽  
Li Churong ◽  
Xia Donglin ◽  
...  

1993 ◽  
Vol 321 ◽  
Author(s):  
Gregory J. Exarhos ◽  
Nancy J. Hess

AbstractIsothermal annealing of amorphous TiO2 films deposited from acidic sol-gel precursor solutions results in film densification and concomitant increase in refractive index. Subsequent heating above 300°C leads to irreversible transformation to an anatase crystalline phase. Similar phenomena occur when such amorphous films are subjected to focused cw laser irradiation. Controlled variations in laser fluence are used to density or crystallize selected regions of the film. Low fluence conditioning leads to the evolution of a subtle nanograin-size morphology, evident in AFM images, which appears to retard subsequent film crystallization when such regions are subjected to higher laser fluence. Time-resolved Raman spectroscopy has been used to characterize irradiated regions in order to follow the crystallization kinetics, assess phase homogeneity, and evaluate accompanying changes in residual film stress.


Author(s):  
Junjie Ma ◽  
Zhe Xu ◽  
Dengyu Zhang ◽  
Haipeng Li
Keyword(s):  

Molecules ◽  
2018 ◽  
Vol 23 (5) ◽  
pp. 1079 ◽  
Author(s):  
Pauline Savignac ◽  
Marie-Joëlle Menu ◽  
Marie Gressier ◽  
Bastien Denat ◽  
Yacine Khadir ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document