Structure of Oxides Grown on Zr-20Nb Alloy

1994 ◽  
Vol 357 ◽  
Author(s):  
O.T. Woo ◽  
D.J. Lockwood ◽  
Y.P. Lin ◽  
V.F. Urbanic

AbstractOxides grown on Zr-20Nb were characterized by Raman Spectroscopy (RS), X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). These oxides were steamformed at 400°C, water-formed at 360 °C and at 300 °C, and air-grown at 400°C. For the oxides grown after relatively short exposures at 360°C and at 400°C, Raman spectra revealed broad peaks at 260 and 660 cm− indicating a crystal structure with high symmetry. Comparison with reference Raman spectra of cubic (c), tetragonal (t), and monoclinic (m) ZrO2 suggested that the oxide was predominantly nearly-cubic (tetragonal with c/a ratio ≈ 1), with minor amounts of moxide. The tetragonality is found to be consistent with TEM analyses and XRD results which showed the presence of a doublet near 2θ ° 74°. The crystal structure in the short-term exposed oxides is interpreted in terms of a tetragonal distortion arising from the displacement of oxygen atoms within the cubic ZrO2 crystal structure. For oxides grown after longer periods of exposure at 300°C and at 400°C, RS and XRD indicate increased amounts of m-oxide.

1996 ◽  
Vol 11 (12) ◽  
pp. 3146-3151 ◽  
Author(s):  
E. Czerwosz ◽  
P. Byszewski ◽  
R. Diduszko ◽  
H. Wronka ◽  
P. Dluźewski ◽  
...  

C60/C70: Ni films with 1.5 wt. % Ni concentration obtained by vacuum deposition under different thermal conditions have been investigated. The structural changes of the layers were investigated by transmission electron microscopy, electron and x-ray diffraction, and Raman spectroscopy. The polycrystalline structure was detected for the layers grown at approximately 450 K on the substrate. At elevated temperature and maintained temperature gradient on the substrate during the process, the changes of the layer's structure and the formation of Ni microcrystals were observed. The Ni microcrystals (5–10 nm in the diameter) and the elongated shapes dimensioned 10 × 150 nm were perceived.


1997 ◽  
Vol 12 (6) ◽  
pp. 1441-1444 ◽  
Author(s):  
L. Armelao ◽  
A. Armigliato ◽  
R. Bozio ◽  
P. Colombo

The microstructure of Fe2O3 sol-gel thin films, obtained from Fe(OCH2CH3)3, was investigated by x-ray diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy. Samples were nanocrystalline from 400 °C to 1000 °C, and the crystallized phase was haematite. In the coatings, the α–Fe2O3 clusters were dispersed as single particles in a network of amorphous ferric oxide.


2014 ◽  
Vol 1033-1034 ◽  
pp. 1054-1057
Author(s):  
Xiang Zhang ◽  
Jin Liang Huang ◽  
Li Hua Li

ZnS: Cu/Fe nanocrystals were synthesized by hydrothermal method with thioglycolic acid as a stabilizer. The phases, grain size and luminescent properties of the nanocrystals were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and fluorescence photometer respectively. The results showed that ZnS: Cu/Fe nanoparticles have a particle size about 7nm and possess a cubic zinc blende crystal structure. The luminous intensity of ZnS: Cu/Fe nanocrystals was strongly when they were reacted at 140°C for 12 hours.


2001 ◽  
Vol 15 (30) ◽  
pp. 1455-1458 ◽  
Author(s):  
H. CHEN ◽  
X. K. LU ◽  
S. Q. ZHOU ◽  
X. H. HAO ◽  
Z. X. WANG

Single phase AlN nanowires are fabricated by a sublimation method. They were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), typical selected area electron diffraction (SAED) and high-resolution transmission electron microscopy (HRTEM). The SEM and TEM images show that most of the nanowires have diameters of about 10–60 nm. The crystal structure of AlN nanowires revealed by XRD, SAED and HRTEM shows the AlN nanowires have a wurtzite structure.


Author(s):  
Łukasz Rakoczy ◽  
Małgorzata Grudzień-Rakoczy ◽  
Fabian Hanning ◽  
Grzegorz Cempura ◽  
Rafał Cygan ◽  
...  

AbstractThe equiaxed Ni-based superalloy René 108 was subjected to short-term annealing at five temperatures between 900 °C and 1100 °C. The phase composition, phase lattice parameters, microstructure, stereological parameters, and chemical composition of γ′ precipitates were investigated by thermodynamic simulations, X-ray diffraction, scanning and transmission electron microscopy, and energy-dispersive X-ray spectroscopy. Analysis of the γ and γ′ lattice parameters using the Nelson-Riley extrapolation function showed that the misfit parameter for temperatures 900 °C to 1050 °C is positive (decreasing from 0.32 to 0.11 pct). At 1100 °C, the parameter becomes negative, δ = − 0.18 pct. During the short-term annealing, γ′ precipitates dissolution occurred progressing more rapidly with increasing temperatures. The surface fraction of γ′ precipitates decreased with increasing temperature from 0.52 to 0.34. The dissolution of γ′ precipitates did not only proceed through uninterrupted thinning of each individual precipitate, but also included more complex mechanisms, including splitting. Based on transmission electron microscopy, it was shown that after γ′ precipitates dissolution, the matrix close to the γ/γ′ interface is strongly enriched in Co and Cr and depleted in Al.


2013 ◽  
Vol 331 ◽  
pp. 522-526
Author(s):  
Jiang Wang ◽  
Jian Li ◽  
You Wen Wang

When the self-made with Teflon lined with stainless steel reaction kettle is used to produce PbTiO3 nanowires with the adoption of hydrothermal reaction , PbTiO3 nanowires with new structure can be made when Pb/Ti equals 2.2. Observed through the Transmission Electron Microscopy (TEM), the bending feature of the PbTiO3 nanowires can be observed for several times when X-ray diffraction (XRD) and Electron Backscattered Diffraction (EBSD) are used to analyse and test the crystal structure of the nanowires. The result of the study shows that the degree of the bending of the PbTiO3 nanowires varies with the intensity of the electron beam from the Transmission Electron Microscopy, and its process can be reversible.


2016 ◽  
Vol 49 (5) ◽  
pp. 1818-1826 ◽  
Author(s):  
X.-Z. Li

In numerous research fields, especially the applications of electron and X-ray diffraction, stereographic projection represents a powerful tool for researchers. SPICA is a new computer program for stereographic projection in interactive crystallographic analysis, which inherits features from the previous JECP/SP and includes more functions for extensive crystallographic analysis. SPICA provides fully interactive options for users to plot stereograms of crystal directions and crystal planes, traces, and Kikuchi maps for an arbitrary crystal structure; it can be used to explore the orientation relationships between two crystalline phases with a composite stereogram; it is also used to predict the tilt angles of transmission electron microscopy double-tilt and rotation holders in electron diffraction experiments. In addition, various modules are provided for essential crystallographic calculations.


2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Jinghua Liu ◽  
Yinghua Niu ◽  
Xiong He ◽  
Jingyao Qi ◽  
Xin Li

TiO2-graphene (TiO2-RGO) nanocomposites were preparedviaa simple chemical method by using graphene oxide (GO) and TiO2nanoparticles as starting materials. The morphologies and structural properties of the as-prepared composites were characterized by X-ray diffraction, Raman spectroscopy, N2adsorption-desorption measurements, and transmission electron microscopy. TiO2-RGO nanocomposites exhibited great photocatalytic activity toward reduction of CO2into CH4(2.10 μmol g−1 h−1) and CH3OH (2.20 μmol g−1 h−1), which is attributed to the synergistic effect between TiO2and graphene.


Sign in / Sign up

Export Citation Format

Share Document