Epitaxial Growth of Refractory Silicides on Silicon

1984 ◽  
Vol 37 ◽  
Author(s):  
L. J. Chen ◽  
H. C. Cheng ◽  
W. T. Lin ◽  
L. J. Chou ◽  
M. S. Fung

AbstractEpitaxial refractory silicides were grown on silicon by solid phase epitaxy method. Transmission electron microscopy has been performed to study the microstructures of epitaxial layers and their orientation relationships with respect to substrate Si.Metal thin films, electron-gun deposited, or sputtered metal-silicon films were annealed in N2 ambient or in vacuum at 200°C-1100°C. Substrate heating, two step annealing and ion beam mixing were applied to induce the growth and improve the quality of epitaxial films. In this paper, formation and structures of epitaxial CrSi2, VSi2, ZrSi2, MoSi2 and WSi2 are presented. Preliminary results of the epitaxial growth of TiSi2, TaSi2 and NbSi2 are reported.

1992 ◽  
Vol 280 ◽  
Author(s):  
I. Hashim ◽  
B. Park ◽  
H. A. Atwater

ABSTRACTEpitaxial Cu thin films have been grown on H-terminated Si(OOl) substrates at room temperature by D.C. ion-beam sputter deposition in ultrahigh vacuum. The development of orientation and microstructure during epitaxial growth from the initial stages of Cu growth up to Cu thicknesses of few hundred nm has been investigated. Analysis by in-situ reflection high energy electron diffraction, thin film x-ray diffraction, and plan-view and cross-sectional transmission electron microscopy indicates that the films are well textured with Cu(001)∥ Si(001) and Cu[100]∥ Si[110]. Interestingly, it is found that a distribution of orientations occurs at the early stages of Cu epitaxy on Si(001) surface, and that a (001) texture emerges gradually with increasing Cu thickness. The effect of silicide formation and deposition conditions on the crystalline quality of Cu epitaxy is also discussed.


1989 ◽  
Vol 157 ◽  
Author(s):  
S. P. Withrow ◽  
O. W. Holland ◽  
S. J. Pennycook ◽  
J. Pankove ◽  
A. Mascarenhas

ABSTRACTIon beam annealing of amorphous Si(100) layers formed by co-implantation of overlapping Ga and As distributions is studied. Annealing was done using 750 keV Si+ ions with the Si substrate held at 300°C. The samples were characterized using 2.0 and 5.0 MeV He+ backscattering/channeling as well as by transmission electron microscopy (TEM). Crystallization of the amorphous Si layer occurs during irradiation via solid-phase-epitaxial growth without impurity precipitation or segregation. Both the Ga and As are mainly substitutional in the Si lattice, even at concentrations in excess of 7 at. % for each species. These results are attributed to compensation effects, most likely through ion pairing of the dopants.


1997 ◽  
Vol 480 ◽  
Author(s):  
K. B. Belay ◽  
M. C. Ridgway ◽  
D. J. Llewellyn

AbstractIn-situ transmission electron microscopy (TEM) has been used to characterize the solidphase epitaxial growth of amorphized GaAs at a temperature of 260°C. To maximize heat transfer from the heated holder to the sample and minimize electron-irradiation induced artifacts, non-conventional methodologies were utilized for the preparation of cross-sectional samples. GaAs (3xI) mm rectangular slabs were cut then glued face-to-face to a size of (6x3) mm stack by maintaining the TEM region at the center. This stack was subsequently polished to a thickness of ~ 200 ýtm. A 3 mm disc was then cut from it using a Gatan ultrasonic cutter. The disc was polished and dimpled on both sides to a thickness of ~15 mimT.h is was ion-beam milled at liquid nitrogen temperature to an electron-transparent layer. From a comparison of in-situ and ex-situ measurements of the recrystallization rate, the actual sample temperature during in-situ characterization was estimated to deviate by ≤ 20°C from that of the heated holder. The influence of electron-irradiated was found to be negligible by comparing the recrystallization rate and microstructure of irradiated and unirradiated regions of comparable thickness. Similarly, the influence of “thin-foil effect” was found to be negligible by comparing the recrystallization rate and microstructure of thick and thin regions, the former determined after the removal of the sample from the microscope and further ion-beam milling of tens of microns of material. In conclusion, the potential influence of artifacts during in-situ TEM can be eliminated by the appropriate choice of sample preparation procedures.


1985 ◽  
Vol 54 ◽  
Author(s):  
Y. S. Chang ◽  
J. J. Chu ◽  
L. J. Chen

ABSTRACTEpitaxial ruthenium, osmium, rhodium and iridium suicides have been successfully grown on silicon. Electroless chemical plating was used to deposit platinum-group metal thin films on silicon. Two step annealing was found to be effective in inducing the growth and improving the quality of the epitaxial suicide on silicon.Transmission electron microscopy was applied to characterize the microstructures and determine the orientation relationships between epitaxial suicides and substrate Si. The compositions of deposited films were determined by scanning Auger electron spec-troscopy combined with depth profiling technique. The percentages of phosphorus were found to be in the range of 2–3 at. %.


1985 ◽  
Vol 54 ◽  
Author(s):  
J. A. Knapp ◽  
S. T. Picraux

ABSTRACTRapid electron beam and lamp heating have been used to form thin epitaxial films of rare-earth suicides by reacting overlayers of the rare earths with (111) Si substrates. Of the metals Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, all but Gd are found to form epitaxial suicide layers by rapid solid-phase reaction, while suicides of Gd, Dy, Tm, Yb and Lu have been formed epitaxially by liquid phase reaction. For all but Er this is the first demonstration of epitaxial growth on Si. Details obtained from ion beam channeling analysis and transmission electron microscopy confirm the expected epitaxial structure and also show that the Si vacancies in the suicide form an ordered superlattice, rather than a random array as had been assumed before.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 788
Author(s):  
Jian-Huan Wang ◽  
Ting Wang ◽  
Jian-Jun Zhang

Controllable growth of wafer-scale in-plane nanowires (NWs) is a prerequisite for achieving addressable and scalable NW-based quantum devices. Here, by introducing molecular beam epitaxy on patterned Si structures, we demonstrate the wafer-scale epitaxial growth of site-controlled in-plane Si, SiGe, and Ge/Si core/shell NW arrays on Si (001) substrate. The epitaxially grown Si, SiGe, and Ge/Si core/shell NW are highly homogeneous with well-defined facets. Suspended Si NWs with four {111} facets and a side width of about 25 nm are observed. Characterizations including high resolution transmission electron microscopy (HRTEM) confirm the high quality of these epitaxial NWs.


2019 ◽  
Author(s):  
Genevieve Buckley ◽  
Gediminas Gervinskas ◽  
Cyntia Taveneau ◽  
Hari Venugopal ◽  
James C. Whisstock ◽  
...  

AbstractCryo-transmission electron tomography (cryo-ET) in association with cryo-focused ion beam (cryo-FIB) milling enables structural biology studies to be performed directly within the cellular environment. Cryo-preserved cells are milled and a lamella with a thickness of 200-300 nm provides an electron transparent window suitable for cryo-ET imaging. Cryo-FIB milling is an effective method, but it is a tedious and time-consuming process, which typically results in ~10 lamellae per day. Here, we introduce an automated method to reproducibly prepare cryo-lamellae on a grid and reduce the amount of human supervision. We tested the routine on cryo-preserved Saccharomyces cerevisiae and demonstrate that this method allows an increased throughput, achieving a rate of 5 lamellae/hour without the need to supervise the FIB milling. We demonstrate that the quality of the lamellae is consistent throughout the preparation and their compatibility with cryo-ET analyses.


1994 ◽  
Vol 339 ◽  
Author(s):  
V. Heera ◽  
R. Kögler ◽  
W. Skorupa ◽  
J. Stoemenos

ABSTRACTThe evolution of the damage in the near surface region of single crystalline 6H-SiC generated by 200 keV Ge+ ion implantation at room temperature (RT) was investigated by Rutherford backscattering spectroscopy/chanelling (RBS/C). The threshold dose for amorphization was found to be about 3 · 1014 cm-2, Amorphous surface layers produced with Ge+ ion doses above the threshold were partly annealed by 300 keV Si+ ion beam induced epitaxial crystallization (IBIEC) at a relatively low temperature of 480°C For comparison, temperatures of at least 1450°C are necessary to recrystallize amorphous SiC layers without assisting ion irradiation. The structure and quality of both the amorphous and recrystallized layers were characterized by cross-section transmission electron microscopy (XTEM). Density changes of SiC due to amorphization were measured by step height measurements.


1987 ◽  
Vol 2 (4) ◽  
pp. 446-455 ◽  
Author(s):  
Sung I. Park ◽  
A. Marshall ◽  
R. H. Hammond ◽  
T. H. Geballe ◽  
J. Talvacchio

Low-energy ion-beam cleaning of the substrates prior to a deposition greatly enhances the quality of ultrathin (< 100 Å) refractory superconducting (Nb, V) films. Using this technique Nb films as thin as 7 Å have been grown, from which good tunnel junctions have been fabricated. Both the native films and the tunnel junctions are sturdy and can be thermally recycled without any degradation. In-situ surface study along with transmission electron microscopy (TEM) results suggest the removal of the carbon atoms from the surface of the substrate without an apparent surface damage as the causes of the improvement. The TEM results indicate that the Nb films grow perfectly lattice matched to the sapphire substrate when the substrate is ion-beam cleaned. This strained-layer epitaxy is observed up to 40 Å, the maximum thickness investigated through TEM.


Sign in / Sign up

Export Citation Format

Share Document