Nitrogen and Water Sorption Properties of Ethyl-Substituted Silica Aerogels and Xerogels

1994 ◽  
Vol 371 ◽  
Author(s):  
Chunling Liu ◽  
Sridhar Komarneni

AbstractHigh surface area ethyltrimethoxysilane (ETMS) modified silica aerogels and xerogels were synthesized by cohydrolyzing the mixtures of ETMS and tetramethylorthosilicate (TMOS). The effects of ETMS content, pH value and solvent addition were investigated. The surface area, pore structure and hydrophobicity were studied using nitrogen and water sorption measurements. By ETMS modification of TMOS gels, high surface area, density and hydrophobicity were achieved. The 25 mole% ETMS-75 mole% TMOS was found to be the best composition for both aerogel and xerogel, which are hydrophobic and have surface areas of 1221 and 832 m2/g, respectively.

1999 ◽  
Vol 590 ◽  
Author(s):  
MA Holland ◽  
DM Pickup ◽  
G Mountjoy ◽  
SC Tsang ◽  
GW Wallidge ◽  
...  

ABSTRACTThe synthesis of high surface area (TiO2)0.18(SiO2)0.82xerogels has been achieved using the sol-gel route. Heptane washing was used before the drying stage to minimise capillary pressure and hence preserve pore structure and maximise the surface area. The as-prepared xerogels were tested for their catalytic activity using the epoxidation of cyclohexene with tert-butyl hydrogen peroxide (TBHP) as a test reaction. Surface areas up to 450 m2g-1 were achieved with excellent selectivities and reasonable percent conversions. SAXS data has identified that heptane washing during drying, in general, results in a preservation of the pore structure, and produces more effective catalysts with higher surface areas and larger pore diameters. Fr-IR spectroscopy has revealed that the catalytic activity is dependant upon the number of Si-O-Ti linkages, inferring intimate mixing of the precursors at the atomic level. XANES data reveals the presence of reversible 4/6-fold Ti sites that are thought to be ‘active’ catalytic sites. The most effective catalyst was produced with a calcination temperature of 500°C, and a heating rate of 5 °Cmin-l


2013 ◽  
Vol 798-799 ◽  
pp. 1123-1127
Author(s):  
Hua Lei Zhou ◽  
Qiong Qiong Zhu ◽  
Dong Hua Huang

The activated carbon with high surface area was prepared by KOH activation from anthracite and used as adsorbent for removal of Cr (VI) from aqueous solution. The pore structure and surface properties were characterized by N2 adsorption at 77K, transmission electron microscope (TEM) and Fourier transform infrared spectroscopy ( FTIR). Effect of pH and isotherms at different temperature were investigated. Results show that the prepared carbon is a microporous-and mesoporous-adsorbent with developed pore structure and abundant surface oxygen-containing groups. PH value of the solution plays key function on the adsorption. The chemical adsorption dominates the adsorption process. The activated carbon exhibits much higher Cr adsorption capacity than the commercial activated carbon at initial pH of ~3. The equilibrium adsorption data are fitted by both Freundlich model and Langmuir model well.


2014 ◽  
Vol 617 ◽  
pp. 187-190 ◽  
Author(s):  
Te Wei Chiu ◽  
Yi Wei Feng

In this study, the effects of glycine-nitrate ratios and postcombustion chemical treatment on the phase evolution and surface area of CuCrO2powders were investigated. The pure phase of CuCrO2powders was obtained at a glycine-nitrate ratio of 1.2–1.4. When the glycine-nitrate ratio was higher than 1.9, the Cu ions were reduced to Cu(0) and the phase of Cu metal and Cr2O3were observed. However, when the glycine-nitrate ratio was lower than 1.1, the Cu ions were partially maintained as Cu(2+), and a bluish residue was observed. As-combusted CuCrO2powder with a high surface area (50 m2/g) was obtained at a glycine-nitrate ratio of 1.2. Furthermore, a high surface area (> 60 m2/g) was obtained by leaching as-combusted CuCrO2powder with diluted nitric acid.


1986 ◽  
Vol 73 ◽  
Author(s):  
Joseph R. Fox ◽  
Douglas A. White ◽  
Susan M. Oleff ◽  
Robert D. Boyer ◽  
Phyllis A. Budinger

AbstractSol-gel precursors to silicon carbide have been prepared using trifunctional chloro and alkoxysilanes which contain both the silicon and carbon necessary for SiC formation. Crosslinked gels having the ideal formula [RSiO1 5].]n have been synthesized by a hydrolysis/condensation scheme for a series of saturated and unsaturated R groups. The starting gels have been characterized by a variety of elemental analysis, spectroscopic and physical measurements including IR. XRD. TGA.. surface area and pore volume. A particularly powerful method for characterizing these gels is the combination of 13C and 29 Si solid state NMR which can provide information about the degree of crosslinking as well as residual hydroxy/alkoxy content.The controlled pyrolysis of these gels has been used to prepare silicon carbide-containing ceramic products with surface areas in excess of 600m2/gm. The pyrolysis products are best described as a partially crystalline, partially amorphous mixture of β-SiC, silica and carbon. The effect of carbon chain length and the degree of unsaturation in the R group on the composition and surface area of the product has been determined. The origin of the high surface area of the pyrolysis products has been identified and its implications on potential uses of these materials is discussed.


Sign in / Sign up

Export Citation Format

Share Document