Dislocation Structure Evolution in Thin Single Crystal Plates Under Cyclic Loading

1995 ◽  
Vol 399 ◽  
Author(s):  
Yury. N. Stepanov ◽  
Alexander M. Scorupsky

ABSTRACTThe effect of cyclic uniaxial loading applied to surfaces of thin single crystal plates on dislocation structure is analyzed analytically and numerically. This work investigates detailed changes in dislocation structure near surfaces and in size and concentration of dislocation loops inside the crystal. The results may be helpful in choosing the optimum regime for material processing and in predicting material properties.

1990 ◽  
Vol 213 ◽  
Author(s):  
Y.D. Hahn ◽  
Z.X. Li ◽  
S.H. Whang ◽  
T. Kawabata

ABSTRACTSingle Crystals of L1o type Ti44Al54V2 alloy were deformed at high temperatures and various orientations. The dislocations thus produced by single slip were studied by TEM. 1/2<110] dislocations produced at 1073 K consist of dislocation loops and curled dislocations with spiral segments, which is in agreement with those shown in the polycrystalline Ti-Al-V, and -Nb alloys deformed under the same conditions. The normal dislocations produced at 873 K pile up in groups, each of which contains several straight dislocations with a screw character. On the other hand, the majority of superdislocations produced at 873 K were found in a dipole form, indicating that the dipole is a favorable configuration at this temperature.


2001 ◽  
Vol 673 ◽  
Author(s):  
Prita Pant ◽  
K.W. Schwarz ◽  
S.P. Baker

ABSTRACTMesoscopic simulations of dislocation interactions in thin, single crystal FCC metal films were carried out. Interactions between threading-misfit and threading-threading dislocation pairs were studied and the strength of the interactions determined. Threading-threading interactions were found to be significantly stronger than threading-misfit interactions. Dislocations with different possible combinations of Burgers vectors were studied under cyclic loading. Only annihilation of dislocations was seen to result in residual dislocation structure after complete unloading. No differences were observed in the nature of threading-misfit interactions in 111 and 001 oriented films.


2017 ◽  
Vol 22 (1-2) ◽  
pp. 69-84
Author(s):  
D. A. Kornilov ◽  
V. M. Kosenkov ◽  
P. P. Silantev

This work is aimed for justification of quantitative effect of radiation defect concentration decreasing in materials depending on density of edge dislocation which are their outlet. The results of defect kinetics modeling with taking into account their recombination on dislocation loops, edge dislocations and pores are given. The summery of this work is useful in the frame of solving problem of decreasing radiation swelling and material properties degradation during neutron irradiation.


Author(s):  
Ernest L. Hall ◽  
J. B. Vander Sande

The present paper describes research on the mechanical properties and related dislocation structure of CdTe, a II-VI semiconductor compound with a wide range of uses in electrical and optical devices. At room temperature CdTe exhibits little plasticity and at the same time relatively low strength and hardness. The mechanical behavior of CdTe was examined at elevated temperatures with the goal of understanding plastic flow in this material and eventually improving the room temperature properties. Several samples of single crystal CdTe of identical size and crystallographic orientation were deformed in compression at 300°C to various levels of total strain. A resolved shear stress vs. compressive glide strain curve (Figure la) was derived from the results of the tests and the knowledge of the sample orientation.


2019 ◽  
Vol 162 ◽  
pp. 103-107 ◽  
Author(s):  
G. L'hôte ◽  
C. Lafond ◽  
P. Steyer ◽  
S. Deschanel ◽  
T. Douillard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document