CW Laser Induced Deep Level Defects in Virgin Silicon.

1981 ◽  
Vol 4 ◽  
Author(s):  
A. Chantre ◽  
M. Kechouane ◽  
D. Bois

ABSTRACTDeep Level Transient Spectroscopy has been used to investigate cw laser induced defects in virgin silicon. Two main regimes have been found. In the solid phase regime, two well defined deep levels at Ec−0.19 eV and Ec−0.45 eV are observed. This point defect introduction is proposed to be involved in the degradation of ion-implanted cw laser annealed junctions. The mechanism leading to point defects generation is likely to involve trapping of in–diffused vacancies, quenched–in from the high temperature state. In the slip lines or melt regimes, additionnal deep levels are detected, which are ascribed to dislocations.

1982 ◽  
Vol 14 ◽  
Author(s):  
P. H. Campbell ◽  
O. Aina ◽  
B. J. Baliga ◽  
R. Ehle

ABSTRACTHigh temperature annealing of Si 3 N4 and SiO2 capped high purity LPE GaAs is shown to result in a reduction in the surface carrier concentration by about an order of magnitude. Au Schottky contacts made on the annealed samples were found to have severely degraded breakdown characteristics. Using deep level transient spectroscopy, deep levels at EC–.58eV, EC–.785eV were detected in the SiO2, capped samples and EC–.62eV, EC–.728eV in the Si3N4 capped Samples while none was detected in the unannealed samples.The electrical degradations are explained in terms of compensation mechanisns and depletion layer recombination-generation currents due to the deep levels.


1996 ◽  
Vol 442 ◽  
Author(s):  
Yuri A. Stotski ◽  
Igor O. Usov ◽  
Alexander V. Suvorov

AbstractDeep levels in 6H-SiC wafers implanted with Al+ ions at high-temperature were studied using current deep level transient spectroscopy (iDLTS). Aluminum was implanted at a temperature of 1800 °C with an energy of 40 keV and a dose of 2 × 1016 cm−2 into n-type epitaxial layers with different carrier concentration. Four levels were found, at Ec−0.12, Ec−0.13, Ec−1.06 and Ev+0.35 eV. It was established that modification of the carrier concentration in original ntype 6H-SiC epitaxial layers affects the deep levels concentration. The relationship between the thickness of the space charge region and the relative deep level concentration was considered.


2002 ◽  
Vol 719 ◽  
Author(s):  
Yutaka Tokuda ◽  
Hiroyuki Iwata

AbstractHydrogen implantation has been used to anneal defects produced in p-type silicon by boron implantation. Boron implantation is performed with an energy of 300 keV to a dose of 1×109 cm-2. Deep level transient spectroscopy measurements show the production of four hole traps (Ev + 0.21, 0.35, 0.50, 0.55 eV) by boron implantation. Subsequent hydrogen implantation is performed with energies of 60, 90, 120 and 150 keV to a dose of 2×1010 cm-2. Among four traps produced by boron implantation, the most significant effect of hydrogen implantation is observed on one trap (Ev + 0.50 eV). A 62% decrease in concentration is caused for this trap by hydrogen implantation with energies of 120 and 150 keV. This partial annealing is ascribed to the reaction of boron-implantation-induced defects with point defects produced by hydrogen implantation.


2009 ◽  
Vol 615-617 ◽  
pp. 365-368 ◽  
Author(s):  
Koutarou Kawahara ◽  
Giovanni Alfieri ◽  
Tsunenobu Kimoto

The authors have investigated deep levels in the whole energy range of bandgap of 4H-SiC, which are generated by N+, P+, Al+ implantation, by deep level transient spectroscopy (DLTS). Ne+-implanted samples have been also prepared to investigate the pure implantation damage. In the n-type as-grown material, Z1/2 (Ec – 0.63 eV) and EH6/7 (Ec – 1.6 eV) are dominant deep levels. When the implant dose is low, seven peaks (IN1, IN3 ~ IN6, IN8, IN9) have emerged by implantation and annealing at 1000oC in the DLTS spectra from all n-type samples. After high-temperature annealing at 1700oC, however, most DLTS peaks disappeared, and two peaks, Z1/2 and EH6/7 survive. In the p-type as-grown material, D center (Ev + 0.40 eV) and HK4 (Ev + 1.4 eV) are dominant. When the implant dose is low, two peaks (IP1, IP3) have emerged by implantation and annealing at 1000oC, and four traps IP2, IP4 (Ev + 0.72 eV), IP7 (Ev + 1.3 eV), and IP8 (Ev + 1.4 eV) are dominant after annealing at 1700oC.


Sign in / Sign up

Export Citation Format

Share Document