Silicon-On-Insulator Mosfets Fabricated in Zone-Melting-Recrystallized Poly-Si Films on SiO2

1981 ◽  
Vol 4 ◽  
Author(s):  
B­Y. Tsaur ◽  
M. W. Gels ◽  
John C. C. Fan ◽  
D. J. Silversmith ◽  
R. W. Mountain

ABSTRACTN- and p-channel enhancement-mode MOSFETs have been fabricated in Si films prepared by zone-melting recrystallization of poly-Si deposited on SiO2-coated Si substrates. The transistors exhibit high surface mobilities, in the range of 560–620 cm2/V−s for electrons and 200–240 cm2/V−s for holes, and low leakage currents of the order of 0.1 pA/μm (channel width). Uniform device performance with a yield exceeding 90% has been measured in tests of more than 100 devices. The interface between the Si film and the SiO2 layer on the substrate is characterized by an oxide charge density of 1–2 × 1011 cm−2 and a high surface carrier mobility. N-channel MOSFETs fabricated inSi films recrystallized on SiO2-coated fused quartz subtrates exhibit surface electron mobilities substantially higher than those of single-crystal Si devices because the films are under a large tensile stress.

1983 ◽  
Vol 23 ◽  
Author(s):  
A. Chiang ◽  
M. H. Zarzycki ◽  
W. P. Meuli ◽  
N. M. Johnson

ABSTRACTDepletion mode as well as enhancement mode n-channel thin-film transistors (TFT's) have been fabricated in CO2 laser-crystallized silicon on fused quartz. Nearly defect-free islands were obtained by using an offset circular beam to form a tilted melt interface. The optimization of subsequent processing steps to achieve simultaneously low leakage currents and voltage thresholds appropriate for depletion-load NMOS circuits involved adjustments of ion implantation and high temperature cycles with the aid of simulation. The resultant high performance silicon-gate TFT's have led to NMOS ring oscillators with 2.5 ns delay/stage and dynamic shift registers with MHz clock rates. These are the first logic circuits fabricated in beam-crystallized silicon on bulk amorphous substrates.


1982 ◽  
Vol 41 (2) ◽  
pp. 186-188 ◽  
Author(s):  
John C. C. Fan ◽  
B‐Y. Tsaur ◽  
R. L. Chapman ◽  
M. W. Geis
Keyword(s):  

1982 ◽  
Vol 3 (12) ◽  
pp. 398-401 ◽  
Author(s):  
B.Y. Tsaur ◽  
J.C.C. Fan ◽  
R.L. Chapman ◽  
M.W. Geis ◽  
D.J. Silversmith ◽  
...  

1982 ◽  
Vol 40 (4) ◽  
pp. 322-324 ◽  
Author(s):  
B‐Y. Tsaur ◽  
John C. C. Fan ◽  
M. W. Geis

1987 ◽  
Vol 107 ◽  
Author(s):  
D. Dutartre

AbstractWe discuss the physics involved in the melting and solidification of Silicon On Insulator thin films (SOI) using lamp or graphite strip heaters. The melting front, called “explosive melting”, controls to a large part the final morphological quality of the SOI film. It exhibits instabilities which can (i) nucleate the dewetting of the film, (ii) cause voids, and (iii) produce a poor surface morphology. The morphologies of the solidification fronts are analyzed. We show that, depending on the experimental conditions, different physical mechanisms are responsible for the front breakdown. Thus we propose that the variety of front morphologies results from the variety of the mechanisms involved, and of their combinations with the “faceting effects”.


2004 ◽  
Vol 811 ◽  
Author(s):  
Stephan Regnery ◽  
Reji Thomas ◽  
Hans Haselier ◽  
Peter Ehrhart ◽  
Rainer Waser ◽  
...  

ABSTRACTSrTa2O6 thin films with thickness between 6 and 150nm were deposited in a multi-wafer planetary MOCVD reactor combined with a TRIJET® liquid delivery system using a single source precursor, strontium-tantalum-(methoxyethoxy)-ethoxide dissolved in toluene. A rather narrow process window for the deposition of stoichiometric SrTa2O6 was found for this precursor at low pressures and a susceptor temperature around 500°C. Films were grown on Pt/TiO2/SiO2/Si, TiNx/Si, and SiO2/Si substrates. The as-deposited films were X-ray amorphous and could be crystallized by post-annealing at a temperature ≥700°C. The SrTa2O6 phase was dominating within a broad range of compositions (Sr/Ta: 0.4–0.7) and a perovskite type phase was observed for Sr/Ta > 0.7. The electrical properties have been investigated with MIM and MIS capacitors after sputter deposition of Pt top electrodes. The amorphous films had a relative permittivity, ε, in the range of 25–45, and low leakage currents. Crystallized films were investigated with Pt MIM capacitors. For stoichiometric SrTa2O6 the dielectric permittivity reached values of ε = 100–110, but the leakage currents were increased. Remarkably, the permittivity is not very sensitive to deviations from the exact stoichiometry of the SrTa2O6 phase (Sr/Ta: 0.40.7), but a decrease to values of ε = 30–40 is observed along with the phase transition at high Sr contents.


2000 ◽  
Vol 623 ◽  
Author(s):  
C.-R. Cho ◽  
J.-H. Koh ◽  
A. Grishin ◽  
S. Abadei ◽  
P. Petrov ◽  
...  

AbstractSingle phase Na0.5K0.5NbO3 (NKN) thin films have been pulsed laser deposited on SiO2/Si(C-01) wafers and LaAlO3(001) and MgO(001) single crystals. Radio frequency (up to 1 MHz) and microwave (up to 50 GHz) dielectric spectroscopy studies have been carried out to characterize thin NKN films for electrically tunable microwave device applications. Films on single crystal oxide substrates showed tunabilities as high as 30-40 % at 40 V bias and dissipation factor of 0.01-0.02 at 1 MHz. The films on Si substrates showed low dielectric losses of < 0.01, and low leakage currents. Dielectric properties of ferroelectric films on Si substrates at low frequencies are greatly influenced by the depletion capacitance and the resistance inserted by semiconductor substrate. Microwave frequency measurements for NKN film on Si wafers yield more than 10 % tunability at 50 GHz and loss tan σ <0.1 at 10 GHz.


1985 ◽  
Vol 53 ◽  
Author(s):  
C.K. Chen ◽  
L. Pfeiffer ◽  
K.W. West ◽  
M.W. Gels ◽  
S. Darack ◽  
...  

ABSTRACTTo prepare silicon-on-insulator (SOI) films by graphite-strip-heater zone-melting recrystallization (ZMR), a capping technique must be used to insure wetting by the molten Si zone. We have demonstrated two new capping techniques that result in reproducible wetting without degrading the crystallographic texture of the recrystallized film: annealing SiO2- capped Si films in NH3 and depositing two SiNx layers with carefully controlled compositions on the SiO2 capping layer. Wetting is promoted by the incorporation of trace amounts of nitrogen at the Si-SiO2 interface. Both N implantation experiments and Auger spectroscopy studies establish that the presence of less than a monolayer of nitrogen at this interface is sufficient to insure wetting.


1982 ◽  
Vol 3 (4) ◽  
pp. 79-82 ◽  
Author(s):  
B.-Y. Tsaur ◽  
J.C.C. Fan ◽  
M.W. Geis ◽  
D.J. Silversmith ◽  
R.W. Mountain

Sign in / Sign up

Export Citation Format

Share Document