Electron Cyclotron Resonance Etching of SiC in SF6/O2 and NF3 /O2 Plasmas

1996 ◽  
Vol 421 ◽  
Author(s):  
F. Ren ◽  
J. M. Grow ◽  
M. Bhaskaran ◽  
J. W. Lee ◽  
C. B. Vartuli ◽  
...  

AbstractEtching of β-SiC with electron cyclotron resonance (ECR) system was investigated. Anisotropic and smooth etching of SiC was demonstrated with SF6/O2 based discharges. The root-mean-square roughness increases from 35 nm to 56 nm for as deposit and etched sample, respectively. The addition of small amount oxygen enhanced the etch rate of SiC slightly, but further increase of oxygen content reduced the etch rate which resulted from dilution of F ion and free radical densities. NF3/O2 based discharges also showed same trends and produced anisotropicly etching. However, the smoothness is not as good as SF6/O2 based discharges.

1999 ◽  
Vol 4 (S1) ◽  
pp. 914-919 ◽  
Author(s):  
J. T. Hsieh ◽  
J. M. Hwang ◽  
H. L. Hwang ◽  
W. H. Hung

Damage-free etching of GaN by Cl2, assisted by an ArF (193 nm) excimer laser, is demonstrated. At low temperatures, photo-assisted etching can provide a better etch rate and largely improve the surface morphology and quality. AFM results show that the etched GaN surface is obtained with a root-mean-square roughness of 1.7 nm. As compared with the photoluminescence spectra of photoelectrochemical wet etched GaN, the photo-assisted cryogenic etching is proved to be a damage-free dry etching technique.


1994 ◽  
Vol 349 ◽  
Author(s):  
N.J. Ianno ◽  
S. Ahmer ◽  
S. Pittal ◽  
John A. Woollam

ABSTRACTThe electron cyclotron resonance (ECR) etching of diamond-like carbon films in an oxygen plasma has been studied. The input variables were flow rate, pressure, power, and bias, while the output parameters were etch rate, and uniformity. In-situ ellipsometry, performed at 44 wavelengths simultaneously, was employed to monitor the etch process in real time. We will show that DLC films can be etched without an applied bias, but the application of an rf induced dc bias greatly enhances etch uniformity. Further, the etch rate is a strong function of the bandgap of the DLC film.


1990 ◽  
Vol 56 (24) ◽  
pp. 2393-2395 ◽  
Author(s):  
I. Suemune ◽  
A. Kishimoto ◽  
K. Hamaoka ◽  
Y. Honda ◽  
Y. Kan ◽  
...  

1995 ◽  
Vol 395 ◽  
Author(s):  
L. Zhang ◽  
J. Ramer ◽  
J. Brown ◽  
K. Zheng ◽  
L.F. Lester ◽  
...  

ABSTRACTElectron cyclotron resonance (ECR) plasma etching characteristics of gallium nitride (GaN) are investigated using low pressure (4-10 mTorr) SiCl4/Ar and Cl2/H2/Ar ECR discharges. The purpose of this effort is to develop a dry etching process for making laser mirrors on GaN and to examine dry etching processes of GaN that do not require hydrogen, which is known to cause carrier compensation in GaN. The etch rate is found to increase near-linearly with increasing DC bias, and a minimum DC bias of 100V is required to initiate etching in SiCl4/Ar. We have also found that the material quality significantly affects the etch rate. The latter decreases with x-ray rocking curve half-width and increases with defect density. A reasonable etch rate of 660Ǻ/min and good surface morphologies obtained in SiCl/Ar ECR etching make this process suitable for gate recess of an FET. An etch rate of 5270Ǻ/min has been achieved in Cl2/H2/Ar plasmas. This is the highest reported etch rate of GaN so far. The smooth and vertical etch sidewalls (etch to mask selectivity of 16 is obtained) make this process promising for dry-etched laser mirrors on GaN.


1998 ◽  
Vol 537 ◽  
Author(s):  
J. T. Hsieh ◽  
J. M. Hwang ◽  
H. L. Hwang ◽  
W. H. Hung

AbstractDamage-free etching of GaN by Cl2, assisted by an ArF (193 nrm) excimer laser, is demonstrated. At low temperatures, photo-assisted etching can provide a better etch rate and largely improve the surface morphology and quality. AFM results show that the etched GaN surface is obtained with a root-mean-square roughness of 1.7 nm. As compared with the photoluminescence spectra of photoelectrochemical wet etched GaN, the photo-assisted cryogenic etching is proved to be a damage-free dry etching technique.


1995 ◽  
Vol 406 ◽  
Author(s):  
S. Thomas ◽  
E. W. Berg ◽  
S. W. Pang

AbstractThe increase in wafer temperature due to plasma heating during etching has been studied. Si and InP were etched using a high ion density discharge generated by an electron cyclotron resonance source. The wafer temperature was measured in-situ using fiberoptic thermometry as microwave power, rf power, chamber pressure, and gas flow were varied. Wafer temperatures increased with both microwave and rf power, and decreased with chamber pressure. For rf power of 50 W, chamber pressure of 1 mTorr, a source distance of 13 cm, and 10 sccm Ar flow, an increase in microwave power from 50 to 500 W caused the temperature to increase from 62 to 186 °C. Additionally, the use of He flowing at the backside of the wafer for temperature control was analyzed. By setting the backside He pressure at 3 Torr, the temperature increased from 20 °C at the beginning of the etch to only 29 °C after 12 min. Time dependent etch characteristics of InP were studied and related to the wafer temperature measurements. At 100 W microwave power, the InP etch rate increased from 100 to 400 nm/min as the wafer temperature rose from 20 to 150 °C. As the temperature increased above 150 °C, the profile became more undercut and the surface morphology improved. By setting the stage temperature to -100 °C and using 3 Torr He pressure at the backside of the wafer, the InP etch rate remained constant during etching and undercutting was suppressed. For 500 W microwave power, a fast InP etch rate of 2 μm/min was obtained when the wafer temperature was <110 °C, and it increased to over 4 μm/min when the temperature was >150 °C.


Sign in / Sign up

Export Citation Format

Share Document