Dependence of Crystallographic Texture of C54 Tisi2 on Thickness and Linewidth In Submicron Cmos Structures

1996 ◽  
Vol 427 ◽  
Author(s):  
V. Svilan ◽  
K. P. Rodbell ◽  
L. A. Clevenger ◽  
C. Cabral ◽  
R. A. Roy ◽  
...  

AbstractPreferential crystal orientation of low-resistance C54 TiSi2 formed in the reaction of polycrystalline and single crystal silicon with titanium was investigated for Ti thicknesses ranging from 15 to 44 nm. Using in situ synchrotron x-ray diffraction during heating of 15 nm of Ti on single crystal Si, we observed that the C54 TiSi2 silicide film showed predominantly <040> grains oriented normal to the sample. In thicker silicide films the <311> orientation dominated or film was randomly oriented. An ex situ four circle diffractometer was used to investigate the strong <040> texture in narrow line arrays of C54-TiSi2 formed on polycrystalline silicon with linewidths from 0.2 to 1.1 μm. We observed that the angular distribution of <040> Ti Si2 grains is dependent on the line direction, where the majority of grains had their (100) planes oriented parallel with the line direction. These findings support a model of the C49 to C54 TiSi2 transformation involving rapid growth of certain orientations favored by the one-dimensional geometry imposed by narrow lines.

1997 ◽  
Vol 483 ◽  
Author(s):  
S. A. Ustin ◽  
C. Long ◽  
L. Lauhon ◽  
W. Ho

AbstractCubic SiC films have been grown on Si(001) and Si(111) substrates at temperatures between 600 °C and 900 °C with a single supersonic molecular beam source. Methylsilane (H3SiCH3) was used as the sole precursor with hydrogen and nitrogen as seeding gases. Optical reflectance was used to monitor in situ growth rate and macroscopic roughness. The growth rate of SiC was found to depend strongly on substrate orientation, methylsilane kinetic energy, and growth temperature. Growth rates were 1.5 to 2 times greater on Si(111) than on Si(001). The maximum growth rates achieved were 0.63 μm/hr on Si(111) and 0.375μm/hr on Si(001). Transmission electron diffraction (TED) and x-ray diffraction (XRD) were used for structural characterization. In-plane azimuthal (ø-) scans show that films on Si(001) have the correct 4-fold symmetry and that films on Si(111) have a 6-fold symmetry. The 6-fold symmetry indicates that stacking has occurred in two different sequences and double positioning boundaries have been formed. The minimum rocking curve width for SiC on Si(001) and Si(111) is 1.2°. Fourier Transform Infrared (FTIR) absorption was performed to discern the chemical bonding. Cross Sectional Transmission Electron Microscopy (XTEM) was used to image the SiC/Si interface.


2016 ◽  
Vol 32 (1) ◽  
pp. 283-289 ◽  
Author(s):  
Xing-Rui LIU ◽  
◽  
Hui-Juan YAN ◽  
Dong WANG ◽  
Li-Jun WAN

2010 ◽  
Vol 2010.8 (0) ◽  
pp. 263-264
Author(s):  
Taeko ANDO ◽  
Hidekazu Ishihara ◽  
Masahiro Nakajima ◽  
Shigeo Arai ◽  
Toshio Fukuda ◽  
...  

1990 ◽  
Vol 191 ◽  
Author(s):  
D. B. Fenner ◽  
D. K. Fork ◽  
G. A. N. Connell ◽  
J. B. Boyce ◽  
F. A. Ponce ◽  
...  

ABSTRACTThin epitaxial films of cubic - fluorite structured PrO2 and YSZ (yttria- stabilized zirconia) were grown on single crystal silicon substrates using the laser ablation - deposition technique. X-ray diffraction theta two - theta, omega rocking and phi scans indicate a high degree of epitaxial orientation of the films to the Si lattice. The highest quality of epitaxy was obtained with the PrO2 [111] oriented normal to Si(111) surfaces and the cubic YSZ [100] normal to Si(100) surfaces. For both PrO2 and YSZ, high epitaxial quality required the removal of the Si native oxide prior to deposition and careful control of the deposition environment. It was further found that the YSZ films on Si(100) were an excellent surface for subsequent laser ablation of YBCO films by the usual in situ process. The resistivity of this YBCO was ≈ 250 micro-ohm-cm at 300 K, extrapolated to the resistivity -temperature origin, showed a sharp transition to zero resistance at ≈ 85 K and was nearly identical to high quality YBCO films deposited on (bulk) YSZ substrates.


2002 ◽  
Vol 750 ◽  
Author(s):  
M. J. Daniels ◽  
B. L. French ◽  
David King ◽  
J. C. Bilello

ABSTRACTQuasicrystalline precursor coatings were deposited on single crystal silicon and sapphire wafers by RF sputtering from an AlCuFe powder composite target. Synchrotron white beam radiography/topography and stress analysis were performed in situ on the wafers during heating to 495 or 585°C, and subsequent cooling. A plateau region of constant stress was present throughout most of the 1 hour anneals before a large tensile stress developed in the film during cooling due to coefficient of thermal expansion mismatch. Cracking was observed for films on both substrates at an average film stress of approximately 930 MPa. Distinct differences in the fracture behavior were observed for the two different substrates. X-ray diffraction performed on films after annealing suggested that texturing took place during the transition to a fully developed quasicrystalline structure.


Sign in / Sign up

Export Citation Format

Share Document