Single Crystal Silicon Carbide On Silicon Using A Supersonic Gas Jet Of Methylsilane

1997 ◽  
Vol 483 ◽  
Author(s):  
S. A. Ustin ◽  
C. Long ◽  
L. Lauhon ◽  
W. Ho

AbstractCubic SiC films have been grown on Si(001) and Si(111) substrates at temperatures between 600 °C and 900 °C with a single supersonic molecular beam source. Methylsilane (H3SiCH3) was used as the sole precursor with hydrogen and nitrogen as seeding gases. Optical reflectance was used to monitor in situ growth rate and macroscopic roughness. The growth rate of SiC was found to depend strongly on substrate orientation, methylsilane kinetic energy, and growth temperature. Growth rates were 1.5 to 2 times greater on Si(111) than on Si(001). The maximum growth rates achieved were 0.63 μm/hr on Si(111) and 0.375μm/hr on Si(001). Transmission electron diffraction (TED) and x-ray diffraction (XRD) were used for structural characterization. In-plane azimuthal (ø-) scans show that films on Si(001) have the correct 4-fold symmetry and that films on Si(111) have a 6-fold symmetry. The 6-fold symmetry indicates that stacking has occurred in two different sequences and double positioning boundaries have been formed. The minimum rocking curve width for SiC on Si(001) and Si(111) is 1.2°. Fourier Transform Infrared (FTIR) absorption was performed to discern the chemical bonding. Cross Sectional Transmission Electron Microscopy (XTEM) was used to image the SiC/Si interface.

1984 ◽  
Vol 35 ◽  
Author(s):  
J. O. Olowolafe ◽  
R. Fastow

ABSTRACTThin layers (~1,000 A ) of Ni and Co have been reacted with both (100) and amorphous silicon (a-Si) using a pulsed ion beam. Samples were analyzed using Rutherford backscattering, x-ray diffraction, and transmission electron microscopy. Rutherford backscattering showed that the metal/a-Si and metal/(100)-Si reaction rates were comparable. Both reactions began at the composition of the lowest eutectic. For comparison. furnace annealing of the same structures showed that the reaction rate of Ni with amorphous silicon was greater than with (100) Si; Co reacted nearly identically with both substrates. Diffraction data suggest that pulsed ion beam annealing crystallizes the amorphous silicon before the metal/a-Si reaction begins.


1990 ◽  
Vol 191 ◽  
Author(s):  
D. B. Fenner ◽  
D. K. Fork ◽  
G. A. N. Connell ◽  
J. B. Boyce ◽  
F. A. Ponce ◽  
...  

ABSTRACTThin epitaxial films of cubic - fluorite structured PrO2 and YSZ (yttria- stabilized zirconia) were grown on single crystal silicon substrates using the laser ablation - deposition technique. X-ray diffraction theta two - theta, omega rocking and phi scans indicate a high degree of epitaxial orientation of the films to the Si lattice. The highest quality of epitaxy was obtained with the PrO2 [111] oriented normal to Si(111) surfaces and the cubic YSZ [100] normal to Si(100) surfaces. For both PrO2 and YSZ, high epitaxial quality required the removal of the Si native oxide prior to deposition and careful control of the deposition environment. It was further found that the YSZ films on Si(100) were an excellent surface for subsequent laser ablation of YBCO films by the usual in situ process. The resistivity of this YBCO was ≈ 250 micro-ohm-cm at 300 K, extrapolated to the resistivity -temperature origin, showed a sharp transition to zero resistance at ≈ 85 K and was nearly identical to high quality YBCO films deposited on (bulk) YSZ substrates.


1993 ◽  
Vol 313 ◽  
Author(s):  
I. Hashim ◽  
H.A. Atwater ◽  
Thomas J. Watson

ABSTRACTWe have investigated structural and magnetic properties of epitaxial Ni80Fe20 films grown on relaxed epitaxial Cu/Si (001) films. The crystallographic texture of these films was analyzed in situ by reflection high energy electron diffraction (RHEED), and ex situ by x-ray diffraction and cross-sectional transmission electron Microscopy (XTEM). In particular, RHEED intensities were recorded during epitaxial growth, and intensity profiles across Bragg rods were used to calculate the surface lattice constant, and hence, find the critical epitaxial thickness for which Ni80Fe20 grows pseudomorphically on Cu (100). XTEM analysis indicated that the epitaxial films had atomically-abrupt interfaces which was not the case for polycrystalline Cu and Ni80Fe20 film interfaces. The Magnetic properties of these epitaxial films were Measured in situ using Magneto-optic Kerr effect magnetometry and were compared with those of polycrystalline films grown on SiO2/Si. Large Hc (∼ 35 Oe) was observed for epitaxial Ni80Fe20 films less than 3.0 nm thick whereas for increasing thickness, Hc decreased approximately monotonically to a few Oersteds. Correlations were made between magnetic properties of these epitaxial films, the strain in the film and the interface roughness obtained from XTEM analysis.


1992 ◽  
Vol 280 ◽  
Author(s):  
I. Hashim ◽  
B. Park ◽  
H. A. Atwater

ABSTRACTEpitaxial Cu thin films have been grown on H-terminated Si(OOl) substrates at room temperature by D.C. ion-beam sputter deposition in ultrahigh vacuum. The development of orientation and microstructure during epitaxial growth from the initial stages of Cu growth up to Cu thicknesses of few hundred nm has been investigated. Analysis by in-situ reflection high energy electron diffraction, thin film x-ray diffraction, and plan-view and cross-sectional transmission electron microscopy indicates that the films are well textured with Cu(001)∥ Si(001) and Cu[100]∥ Si[110]. Interestingly, it is found that a distribution of orientations occurs at the early stages of Cu epitaxy on Si(001) surface, and that a (001) texture emerges gradually with increasing Cu thickness. The effect of silicide formation and deposition conditions on the crystalline quality of Cu epitaxy is also discussed.


2002 ◽  
Vol 750 ◽  
Author(s):  
M. J. Daniels ◽  
B. L. French ◽  
David King ◽  
J. C. Bilello

ABSTRACTQuasicrystalline precursor coatings were deposited on single crystal silicon and sapphire wafers by RF sputtering from an AlCuFe powder composite target. Synchrotron white beam radiography/topography and stress analysis were performed in situ on the wafers during heating to 495 or 585°C, and subsequent cooling. A plateau region of constant stress was present throughout most of the 1 hour anneals before a large tensile stress developed in the film during cooling due to coefficient of thermal expansion mismatch. Cracking was observed for films on both substrates at an average film stress of approximately 930 MPa. Distinct differences in the fracture behavior were observed for the two different substrates. X-ray diffraction performed on films after annealing suggested that texturing took place during the transition to a fully developed quasicrystalline structure.


1989 ◽  
Vol 4 (5) ◽  
pp. 1227-1232 ◽  
Author(s):  
J. J. Grob ◽  
A. Grob ◽  
P. Thevenin ◽  
P. Siffert ◽  
C. d'Anterroches ◽  
...  

Oxygen ions were implanted into (100) oriented single crystal Si at energies in the range of 0.6 to 2 MeV at normal and oblique (60°) incidences. Oxygen concentration profiles were measured using the 16O(d, α)14N nuclear reaction for 900 keV deuterons. The experimentally measured oxygen distributions were subsequently fitted to the theoretical profiles calculated assuming the Pearson VI distribution. The distribution moments (Rp, ΔRp, ΔR⊥ skewness, and kurtosis) were deduced as the best fit parameters and compared to the computer simulation results (TRIM 87 and PRAL). Whatever the calculation method, the measured Rp and ΔRp values are close to those predicted by the theory. Deeply buried SiO2 layers were formed using a single step implantation and annealing process. A dose of 1.8 × 1018/cm2 of 2 MeV O+ was implanted into the Si substrate maintained at a temperature of 550 °C. The implanted samples were characterized using the Rutherford backscattering (RBS)/channeling technique and cross-sectional transmission electron microscopy (XTEM). The implanted samples were subsequently annealed at 1350 °C for 4 h in an Ar ambient. The annealing process results in creating a continuous SiO2 layer, 0.4 μm thick below a 1.6 μm thick top single crystal silicon overlayer. The buried SiO2 layer contains the well-known faceted Si inclusions. The density of dislocations within the top Si layer remains lower than the XTEM detection limit of 107/cm2. Between the Si overlayer and the buried SiO2 a layer of faceted longitudinal SiO2 precipitates is present. A localized dislocation network links the precipitates to the buried SiO2 layer.


2014 ◽  
Vol 1655 ◽  
Author(s):  
Fahid Algahtani ◽  
Patrick W Leech ◽  
Geoffrey K Reeves ◽  
Anthony S Holland ◽  
Mark Blackford ◽  
...  

ABSTRACTThe formation of nickel germanide has been examined over a range of low temperatures (200-400 °C) in an attempt to minimize the thermal budget for the process. Cross-sectional Transmission Electron Microscopy (TEM) was used to determine the texture of the germanide layer and the morphology and constituent composition of the Ge/NiGe interface. The onset and completion of reaction between Ni and Ge were identified by means of a heated stage in combination with in-situ x-ray diffraction (XRD) measurements. The stages of reaction were also monitored using measurements of sheet resistance of the germanides by the Van der Pauw technique. The results have shown that the minimum temperature for the initiation of reaction of Ni and Ge to form NiGe was 225 °C. However, an annealing temperature > 275 °C was necessary for the extensive (and practical) formation of NiGe. Between 200 and 300 °C, the duration of annealing required for the formation of NiGe was significantly longer than at higher temperatures. The stoichiometry of the germanide was very close to NiGe (1:1) as determined using energy dispersive spectroscopy (EDS).


1996 ◽  
Vol 427 ◽  
Author(s):  
V. Svilan ◽  
K. P. Rodbell ◽  
L. A. Clevenger ◽  
C. Cabral ◽  
R. A. Roy ◽  
...  

AbstractPreferential crystal orientation of low-resistance C54 TiSi2 formed in the reaction of polycrystalline and single crystal silicon with titanium was investigated for Ti thicknesses ranging from 15 to 44 nm. Using in situ synchrotron x-ray diffraction during heating of 15 nm of Ti on single crystal Si, we observed that the C54 TiSi2 silicide film showed predominantly <040> grains oriented normal to the sample. In thicker silicide films the <311> orientation dominated or film was randomly oriented. An ex situ four circle diffractometer was used to investigate the strong <040> texture in narrow line arrays of C54-TiSi2 formed on polycrystalline silicon with linewidths from 0.2 to 1.1 μm. We observed that the angular distribution of <040> Ti Si2 grains is dependent on the line direction, where the majority of grains had their (100) planes oriented parallel with the line direction. These findings support a model of the C49 to C54 TiSi2 transformation involving rapid growth of certain orientations favored by the one-dimensional geometry imposed by narrow lines.


1991 ◽  
Vol 237 ◽  
Author(s):  
Z. Ma ◽  
L. H. Allen ◽  
S. Lee

ABSTRACTThe formation of suicides during the thermal reaction of Ti/polysilicon bilayers has been investigated using both in-stu four point sheet resistance measurements and ex-situ measurements including X-ray diffraction, cross-sectional transmission electron microscopy and Auger electron spectroscopy. For a series of samples annealed at a ramp rate of 10°C/min the following sequence of changes in the bilayers occurred. At temperatures exceeding 350°C and prior to the silicidation oxygen from the vacuum system diffuses into the Ti film forming a solid solution of Ti(O) with O levels up to 20 %. An amorphous TixSiy layer is the first major suicide reaction observed at temperatures near 440°C. The first major crystalline phase is observed at 500°C and identified as C49 TiSi2. This phase was found to coexist at these temperatures with the partially consumed Ti(O) and the amorphous TixSiy layers. Further annealing above 700 °C results in the final structural transformation from C49 TiSi2 to C54 TiSi2.


1994 ◽  
Vol 363 ◽  
Author(s):  
Y. W. Bae ◽  
W. Y. Lee ◽  
T. M. Besmann ◽  
P. J. Blau ◽  
L. Riester

AbstractThin films of titanium nitride were chemical vapor deposited on (100)-oriented single-crystal silicon substrates from tetrakis (dimethylamino) titanium, Ti((CH3)2N)4, and ammonia gas mixtures in a cold-wall reactor at 623 K and 655 Pa. The films were characterized by Auger electron spectroscopy, X-ray diffraction, and transmission electron spectroscopy. The nano-scale hardness of the film, measured by nanoindentation, was 12.7±0.6 GPa. The average kinetic friction coefficient against unlubricated, type- 440C stainless steel was determined using a computer-controlled friction microprobe to be ∼0.43.


Sign in / Sign up

Export Citation Format

Share Document