Low Temperature Annealing of Rh (111) Surfaces

1996 ◽  
Vol 440 ◽  
Author(s):  
Frank Tsui ◽  
Joanne Wellman ◽  
Junhao Xu ◽  
Ctirad Uher ◽  
Roy Clarke

AbstractWe have studied smoothing kinetics of Rh (111) surfaces during low temperature annealing using in-situ real-time reflection high energy electron diffraction and scanning tunneling microscopy. The initial surface features were produced by low temperature homoepitaxial growth of Rh (111). Two types of surfaces were studied, surfaces with two-dimensional (2D) islands at submonolayer coverages, and those with 3D multilayered features. 2D islands coarsen rapidly at the onset of the anneal. 3D features are more stable initially. Their annealing process exhibits a distinct transition from an initial slow coarsening, characterized by a nearly linear growth of lateral size, to a rapid flattening. The activation energy for the transition is ˜ 0.6 eV. The observed behavior indicates that the smoothing kinetics in the low temperature regime is limited by adatom detachment from the step-edges, and that the fast process for the 3D features is made possible by the formation of a network of “chain-like” structures which provide new pathways for diffusion thus overcoming the slow detachment kinetics. These effects determine the low temperature stability of the non-equilibrium epitaxial morphologies.

1997 ◽  
Vol 475 ◽  
Author(s):  
E. Mentz ◽  
A. Bauer ◽  
D. Weiss ◽  
G. Kaindl

ABSTRACTIn-situ scanning tunneling microscopy (STM). magneto-optical Kerr effect (MOKE) and Kerr microscopy are used to investigate the relations between structure, morphology, and magnetism in low-temperature (LT) grown Fe/Cu(100) films. At the spin reorientation thickness of ≈ 3.8 monolayers (ML) Fe/Cu(100) the coexistence of in-plane and out-of-plane magnetized domains is observed. For Fe thicknesses between 3.8 and 6 ML Fe/Cu(100). an irreversible spin reorientation from in-plane to out-of-plane can be induced by annealing up to 420 K. Annealing of LT-grown Fe/Cu(100) films is proposed to provide smooth surfaces for Cu/Fe/Cu(100) sandwich preparations.


2012 ◽  
Vol 122 ◽  
pp. 1-5 ◽  
Author(s):  
Andres Castellanos-Gomez ◽  
Gabino Rubio-Bollinger ◽  
Manuela Garnica ◽  
Sara Barja ◽  
Amadeo L. Vázquez de Parga ◽  
...  

Author(s):  
A. R. Smith ◽  
V. Ramachandran ◽  
R. M. Feenstra ◽  
D. W. Greve ◽  
A. Ptak ◽  
...  

Surface reconstructions during homoepitaxial growth of GaN (0001) are studied using reflection high-energy electron diffraction and scanning tunneling microscopy. In agreement with previous workers, a distinct transition from rough to smooth morphology is seen as a function of Ga to N ratio during growth. However, in contrast to some prior reports, no evidence for a 2×2 reconstruction during GaN growth is observed. Observations have been made using four different nitrogen plasma sources, with similar results in each case. A 2×2 structure of the surface can be obtained, but only during nitridation of the surface in the absence of a Ga flux.


1991 ◽  
Vol 237 ◽  
Author(s):  
R. Stalder ◽  
C. Schwarz ◽  
H. Sirringhaus ◽  
H. VON Känel

ABSTRACTEpitaxial single-domain CoSi2(100) layers were grown on Si(100) by use of a template technique. In-situ scanning tunneling microscopy (STM) and reflection high energy electron diffraction (RHEED) were used for a detailed surface study. The (√2×√2)R45 reconstruction of the Co-rich “C-surface” and the (3√2×√2)R45 as well as a newly discovered (√2×√2)R45 of the Si-rich “S-surface” were resolved in real space and are discussed in detail. The transition from the C- to the S-surface above 500 °C is related to a (2×2) reconstruction.


Sign in / Sign up

Export Citation Format

Share Document