Solution and Precipitation Hardening in Carbon-Doped Two-Phase γ-Titanium Aluminides

1996 ◽  
Vol 460 ◽  
Author(s):  
F. Appel ◽  
U. Christoph ◽  
R. Wagner

ABSTRACTA two-phase titanium aluminide alloy was systematically doped with carbon to improve its high temperature strength. Solid solutions and precipitates of carbon were formed by different thermal treatments. A fine dispersion of perovskite precipitates was found to be very effective for improving the high temperature strength and creep resistance of the material. The strengthening mechanisms were characterized by flow stresses and activation parameters. The investigations were accompanied by electron microscope observation of the defect structure which was generated during deformation. Special attention was paid on the interaction mechanisms of perfect and twinning dislocations with the carbide precipitates.

2010 ◽  
Vol 654-656 ◽  
pp. 424-427
Author(s):  
Nobuaki Sekido ◽  
Yoko Yamabe-Mitarai

Possibilities of heat resistant alloys based on a C15 Laves phase and an FCC phase have been examined in the Ir-Pt-Y ternary system. Although the Ir solid solution phase (A1) and the Ir2Y phase (C15) are not in equilibrium in the Ir-Y binary system, this equilibrium is attained by small Pt additions to the binary system. High temperature compressive strength of an A1/C15 monovariant eutectic alloy was found to be much lower than that of Ir-15Nb, an Ir based γ/γ' alloy. Low strength of the present alloys is attributed to the absence of effective strengthening mechanisms that operate in the A1 phase; for Y is hardly dissolved within the A1 phase, by which solution hardening and precipitation hardening are not available.


1996 ◽  
Vol 460 ◽  
Author(s):  
A. Tomasi ◽  
C. Noseda ◽  
M. Nazmy ◽  
S. Gialanella

ABSTRACTTitanium aluminides have potential interest for high temperature applications because of their low density and high temperature strength. In this study the isothermal oxidation behavior in air and in the temperature range 700–850°C of γ-α2Ti-Al bulk alloys with different additions of W (0–9.5 wt.%) and Si (0–5.0 wt.%) was investigated. The samples were prepared by arc-melting starting from pure element powders (99.99%). After thermal treatments, for homogenisation and phase stabilisation, the samples were tested using a thermal analysis apparatus in order to evaluate their oxidation resistance. The oxidation rates show the beneficial effect of the W and Si additions. The growth and adherence of the protective scale on alloys have been investigated in conjunction with detailed oxide scale characterisation using the techniques of scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results of the study are used for critical assessment of the oxidation mechanisms leading to the formation of surface layers of different compositions.


Author(s):  
M. G. Burke ◽  
M. N. Gungor ◽  
M. A. Burke

Intermetallic matrix composites are candidates for ultrahigh temperature service when light weight and high temperature strength and stiffness are required. Recent efforts to produce intermetallic matrix composites have focused on the titanium aluminide (TiAl) system with various ceramic reinforcements. In order to optimize the composition and processing of these composites it is necessary to evaluate the range of structures that can be produced in these materials and to identify the characteristics of the optimum structures. Normally, TiAl materials are difficult to process and, thus, examination of a suitable range of structures would not be feasible. However, plasma processing offers a novel method for producing composites from difficult to process component materials. By melting one or more of the component materials in a plasma and controlling deposition onto a cooled substrate, a range of structures can be produced and the method is highly suited to examining experimental composite systems. Moreover, because plasma processing involves rapid melting and very rapid cooling can be induced in the deposited composite, it is expected that processing method can avoid some of the problems, such as interfacial degradation, that are associated with the relatively long time, high temperature exposures that are induced by conventional processing methods.


2000 ◽  
Vol 646 ◽  
Author(s):  
Fritz Appel ◽  
Helmut Clemens ◽  
Michael Oehring

ABSTRACTIntermetallic titanium aluminides are one of the few classes of emerging materials that have the potential to be used in demanding high-temperature structural applications whenever specific strength and stiffness are of major concern. However, in order to effectively replace the heavier nickel-base superalloys currently in use, titanium aluminides must combine a wide range of mechanical property capabilities. Advanced alloy designs are tailored for strength, toughness, creep resistance, and environmental stability. Some of these concerns are addressed in the present paper through specific comments on the physical metallurgy and technology of gamma TiAl-base alloys. Particular emphasis is placed on recent developments of TiAl alloys with enhanced high-temperature capability.


1994 ◽  
Vol 364 ◽  
Author(s):  
J. Kameda ◽  
C. R. Gold ◽  
E. S. Lee ◽  
T. E. Bloomer ◽  
M. Yamaguchi

AbstractSmall punch (SP) tests on single grained titanium aluminide (Ti-48 at.%Al) specimens with 12° and 80° lamellar orientations with respect to the tensile stress axis were conducted at 1123 K in air. Brittle cracks readily extended through the thickness in the 80° lamellar structure. In a SP specimen with the 12° lamellar structure load-interrupted at the strain of 0.43%, surface cracks with the depth of 15–25 μm were formed along lamellar boundaries. Local oxidation behavior on partly sputtered surfaces in the load-interrupted 12° lamellar specimen was examined using scanning Auger microprobe (SAM). Oxygen enriched regions were observed near cracks and some lamellar layers. The mechanisms of high temperature oxygen-induced cracking are discussed in terms of the local oxidation near cracks and lamellar boundaries.


2000 ◽  
Vol 646 ◽  
Author(s):  
C.L. Ma ◽  
Y. Tan ◽  
H. Tanaka ◽  
A. Kasama ◽  
R. Tanaka ◽  
...  

ABSTRACTThis article describes the phase stability, microstructures and mechanical properties of silicide-reinforced Nb alloys in Nb-Mo-W-Si quaternary system prepared by arc melting and heat treatment. There exists an equilibrium two-phase field of Nb solid solution (Nbss) and α(Nb,Mo,W)5Si3 in a Nb-rich region of this quaternary system. Alloys in this region have a eutectic reaction of L → Nbss+β(Nb,Mo,W)5Si3 during solidification. The β(Nb,Mo,W)5Si3 transforms to the stable α(Nb,Mo,W)5Si3 at very high temperature. The cast and heat treated hypoeutectic alloys consist of dendritic Nbss, network-shaped Nbss matrix and α(Nb,Mo,W)5Si3. These quaternary alloys exhibit excellent high-temperature strength, although the fracture toughness is still unacceptable for practical applications.


2000 ◽  
Vol 652 ◽  
Author(s):  
Fritz Appel ◽  
Michael Oehring

ABSTRACTThe paper presents an electron microscope study of phase transformation and recrystallization in an intermetallic α2(Ti3Al) + γ(TiAl) titanium aluminide alloy, after long-term creep. The mechanisms are closely related to the atomic structure of the α2/γ phase boundaries and are probably driven by a non-equilibrium of the phase composition leading to the dissolution of the α2 phase. The α2 /γ transformation is accompanied by the formation of precipitates, because the γ(TiAl)phase has a significantly lower solubility for interstitial impurities than the α2(Ti3Al) phase.


2008 ◽  
Vol 483-484 ◽  
pp. 551-554 ◽  
Author(s):  
S.R. Dey ◽  
Satyam Suwas ◽  
J.-J. Fundenberger ◽  
J.X. Zou ◽  
T. Grosdidier ◽  
...  

2011 ◽  
Vol 690 ◽  
pp. 274-277 ◽  
Author(s):  
Florian Stadler ◽  
Helmut Antrekowitsch ◽  
Werner Fragner ◽  
Helmut Kaufmann ◽  
Peter J. Uggowitzer

In order to investigate the effect of Ni on the high-temperature strength of Al-Si cast alloys, tensile properties of hypoeutectic and eutectic alloys were determined at 250 °C after long-term annealing at test temperature. LOM- and SEM-analysis revealed the existence of Al3Ni-phases in close contact to eutectic Si. It was shown that the strength can be increased by the addition of Ni, though just to a certain level, depending on the fraction of eutectic phase in the alloy. The alloys were considered as a coarse two-phase system where a hardening effect is caused by load transfer to the harder phase, which requires a certain connectivity/contiguity of the latter. The paper describes the extent of contiguity of the eutectic as well as the hard silicon and Al3Ni-phases within the eutectic, and discusses their contribution to an enhanced strength of Al-Si alloys at elevated temperatures.


Sign in / Sign up

Export Citation Format

Share Document