Deposition and Characterization of Polycrystalline Silicon Films on Glass for thin Film Solar Cells

1997 ◽  
Vol 467 ◽  
Author(s):  
R. B. Bergmann ◽  
J. Krinke ◽  
H. P. Strunk ◽  
J. H. Werner

ABSTRACTWe deposit phosphorus-doped, amorphous Si by low pressure chemical vapor deposition and subsequently crystallize the films by furnace annealing at a temperature of 600°C. Optical in-situ monitoring allows one to control the crystallization process. Phosphorus doping leads to faster crystallization and a grain size enhancement with a maximum grain size of 15 μm. Using transmission electron microscopy we find a log-normal grain size distribution in our films. We demonstrate that this distribution not only arises from solid phase crystallization of amorphous Si but also from other crystallization processes based on random nucleation and growth. The log-normal grain size distribution seems to be a general feature of polycrystalline semiconductors.

2011 ◽  
Vol 1308 ◽  
Author(s):  
Andreas Bill ◽  
Ralf B. Bergmann

ABSTRACTWe present an overview of the theory developed over the last few years to describe the crystallization of amorphous solids. The microstructure of the crystallizing solid is described in terms of the grain size distribution (GSD). We propose a partial differential equation that captures the physics of crystallization in random nucleation and growth processes. The analytic description is derived for isotropic and anisotropic growth rates and allows for the analysis of different stages of crystallization, from early to full crystallization. We show how the timedependence of effective nucleation and growth rates affect the final distribution. In particular, we demonstrate that for cases described by the Kolmogorov-Avrami-Mehl-Johnson (KAMJ) model applicable to a large class of crystallization processes a lognormal type distribution is obtained at full crystallization. The application of the theory to the crystallization of silicon thin films is discussed.


1996 ◽  
Vol 424 ◽  
Author(s):  
Y.-H. Song ◽  
S.-Y. Kang ◽  
K. I. Cho ◽  
H. J. Yoo ◽  
J. H. Kim ◽  
...  

AbstractThe substrate effects on the solid-phase crystallization of amorphous silicon (a-Si) have been extensively investigated. The a-Si films were prepared on two kinds of substrates, a thermally oxidized Si wafer (SiO2/Si) and a quartz, by low-pressure chemical vapor deposition (LPCVD) using Si2H6 gas at 470 °C and annealed at 600 °C in an N2 ambient for crystallization. The analysis using XRD and Raman scattering shows that crystalline nuclei are faster formed on the SiO2/Si than on the quartz, and the time needed for the complete crystallization of a-Si films on the SiO2/Si is greatly reduced to 8 h from ˜15 h on the quartz. In this study, it was first observed that crystallization in the a-Si deposited on the SiO2/Si starts from the interface between the a-Si film and the thermal oxide of the substrate, called interface-induced crystallization, while random nucleation process dominates on the quartz. The very smooth surface of the SiO2/Si substrate is responsible for the observed interface-induced crystallization of a-Si films.


2011 ◽  
Vol 172-174 ◽  
pp. 1128-1133 ◽  
Author(s):  
Eric A. Jägle ◽  
Eric J. Mittemeijer

The kinetics of phase transformations for which nucleation occurs on parent-micro-structure grain boundaries, and the resulting microstructures, were investigated by means ofgeometric simulations. The influences of parent microstructure grain-boundary area density,parent grain-size distribution and parent→product kinetics were analysed. Additionally, thesimulated kinetics were compared with predictions from two kinetic models, namely a modelproposed for spatially random nucleation and a model proposed for grain-boundary nucleation.It was found that the simulated transformed fraction as function of time lies in between the twomodel predictions for all investigated parent microstructures and parent→product kinetics.


1992 ◽  
Vol 71 (2) ◽  
pp. 648-652 ◽  
Author(s):  
Keiji Oyoshi ◽  
Tomonori Yamaoka ◽  
Takashi Tagami ◽  
Yasunori Arima ◽  
Shuhei Tanaka

1998 ◽  
Vol 123-124 ◽  
pp. 376-380 ◽  
Author(s):  
Ralf B. Bergmann ◽  
Frank G. Shi ◽  
Hans J. Queisser ◽  
Jörg Krinke

2000 ◽  
Vol 37 (4) ◽  
pp. 817-827 ◽  
Author(s):  
Murray D Fredlund ◽  
D G Fredlund ◽  
G Ward Wilson

The grain-size distribution is commonly used for soil classification; however, there is also potential to use the grain-size distribution as a basis for estimating soil behaviour. For example, much emphasis has recently been placed on the estimation of the soil-water characteristic curve. Many methods proposed in the literature use the grain-size distribution as a starting point to estimate the soil-water characteristic curve. Two mathematical forms are presented to represent grain-size distribution curves, namely, a unimodal form and a bimodal form. The proposed equations provide methods for accurately representing uniform, well-graded soils, and gap-graded soils. The five-parameter unimodal equation provides a closer fit than previous two-parameter, log-normal equations used to fit uniform and well-graded soils. The unimodal equation also improves representation of the silt- and clay-sized portions of the grain-size distribution curve.Key words: grain-size distribution, sieve analysis, hydrometer analysis, soil classification, probability density function.


Materials ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 102 ◽  
Author(s):  
Xue Bai ◽  
Yang Zhao ◽  
Jian Ma ◽  
Yunxi Liu ◽  
Qiwu Wang

Average grain size is usually used to describe a polycrystalline medium; however, many investigations demonstrate the grain-size distribution has a measurable effect on most of mechanical properties. This paper addresses the experimental quantification for the effects of grain-size distribution on attenuation in α-titanium alloy by laser ultrasonics. Microstructures with different mean grain sizes of 26–49 μm are obtained via annealing at 800 °C for different holding times, having an approximately log-normal distribution of grain sizes. Experimental measurements were examined by using two different theoretical models: (i) the classical Rokhlin’s model considering a single mean grain size, and (ii) the improved Turner’s model incorporating a log-normal distribution of grain sizes in the attenuation evaluation. Quantitative agreement between the experiment and the latter model was found in the Rayleigh and the Rayleigh-to-stochastic transition regions. A larger attenuation level was exhibited than the classical theoretical prediction considering a single mean grain size, and the frequency dependence of attenuation reduced from a classical fourth power to an approximately second power due to a greater probability of large grains than the assumed Poisson statistics. The provided results would help support the use of laser ultrasound technology for the non-destructive evaluation of grain size distribution in polycrystalline materials.


2011 ◽  
Vol 682 ◽  
pp. 153-158
Author(s):  
Ying Guang Liu ◽  
Jian Qiu Zhou

A theoretical model based on self-consistent approximation is proposed to explore the effect of grain size distribution on the local mechanical response of nanocrystalline (nc) materials. The representative volume element (RVE) is composed of grains randomly distributed with a grain size distribution following a log-normal statistical function. The grain interior and grain boundary are taken as an integral object to sustain deformation mechanisms of grain-boundary sliding, grain-boundary diffusion and grain-interior plasticity. Local plastic strains and internal stresses, developing within the RVE, have been recorded and discussed.


2009 ◽  
Vol 1153 ◽  
Author(s):  
Andreas Bill ◽  
Anthony V Teran ◽  
Ralf B Bergmann

AbstractWe analyze the grain size distribution during solid phase crystallization of Silicon thin films. We use a model developed recently that offers analytical expressions for the time-evolution of the grain size distribution during crystallization of a d-dimensional solid. Contrary to the usual fit of the experimental results with a lognormal distribution, the theory describes the data from basic physical principles such as nucleation and growth processes. The theory allows for a good description of the grain size distribution except for early stages of crystallization. The latter case is expected and discussed. An important outcome of the model is that the distribution at full crystallization is determined by the time-dependence of the nucleation and growth rates of grains. In the case under consideration, the theory leads to an analytical expression that has the form of a lognormal-type distribution for the fully crystallized sample.


2022 ◽  
Author(s):  
Koushik Saha ◽  
SUBHAJIT SINHA

Abstract It is crucial for policy makers and environmental managers to determine the future dynamics of coastal wetlands, especially the existence of their response, disruption, and recovery regimes. Reconstruction of meso-scale evolution in coastal ecosystems can help to adapt coastal resource management techniques to the natural scales of system activity, thereby encouraging true biodiversity. This research provides an overview of decadal (mesoscale) geomorphic transition by high-resolution grain size analysis of a sediment deposit from a barrier estuary regime on the Chandipur coast, India. Coastal marshland’s grain size distribution (GSD) has generally been analyzed using End Member Mixing Models (EMMA) and Probability Density Function (PDF) methods (e.g. log-normal, log skew-Laplace). Although these techniques do not consider the compositional nature of the records, which can undermine the outcomes of the interpretation of sedimentary deposits. The approach to reliable granulometric analysis of lithostratigraphic sequences aims at establishing direct links between fluid dynamics and subsequent shifts in the texture of sediments. In this study, GSD analysis of marsh sediment is represented by compositional data analysis (CoDa) and a multivariate statistical framework. Barrier estuary evolution, presented by time lapses of satellite maps coupled with grain size and carbon content of marsh sediment, primarily reflects the evolving hydrodynamics of the back barrier area. These findings will provide a statistically robust analysis of the depositional system in coastal marshland. Multiannual environmental variations in the back barrier configuration illustrate the importance of this applied approach with respect to bridging the basis of estuarine evolution and process information.


Sign in / Sign up

Export Citation Format

Share Document