The Effect of contamination solutions and substrate conditions on Copper Particle Growth Behavior

1997 ◽  
Vol 477 ◽  
Author(s):  
Geun-Min Choi ◽  
Katsuyuki Sekijne ◽  
Hiroshi Morita ◽  
Tadahiro Ohmi

ABSTRACTCu particle growth behavior on two silicon substrates, amorphous and single crystal silicon, has been investigated using two contamination solutions. This study reveals that the growth behavior of Cu particle depends on substrate conditions and copper contamination solutions. Contamination level is independent of split conditions. From the SEM images of an amorphous silicon shows a big difference in the number of particles depending on copper contamination solution. The amorphous silicon has similar native oxide thickness in ultrapure water spiked with CuF2 and CuCl2, whereas the single crystal silicon is different from the native oxide thickness depending on copper contamination solution. When 1 ppm of Cu in ultrapure water was spiked as a function of time, the amount of Cu impurity on amorphous silicon in the early dipping stage was measured 10 times higher than that on single crystal silicon for both of copper contamination solutions.

2013 ◽  
Vol 42 (2) ◽  
pp. 99-101
Author(s):  
V. P. Gavrilenko ◽  
A. A. Kuzin ◽  
A. Yu. Kuzin ◽  
A. A. Kuz’min ◽  
V. B. Mityukhlyaev ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 429
Author(s):  
Tengyun Liu ◽  
Peiqi Ge ◽  
Wenbo Bi

Lower warp is required for the single crystal silicon wafers sawn by a fixed diamond wire saw with the thinness of a silicon wafer. The residual stress in the surface layer of the silicon wafer is the primary reason for warp, which is generated by the phase transitions, elastic-plastic deformation, and non-uniform distribution of thermal energy during wire sawing. In this paper, an experiment of multi-wire sawing single crystal silicon is carried out, and the Raman spectra technique is used to detect the phase transitions and residual stress in the surface layer of the silicon wafers. Three different wire speeds are used to study the effect of wire speed on phase transition and residual stress of the silicon wafers. The experimental results indicate that amorphous silicon is generated during resin bonded diamond wire sawing, of which the Raman peaks are at 178.9 cm−1 and 468.5 cm−1. The ratio of the amorphous silicon surface area and the surface area of a single crystal silicon, and the depth of amorphous silicon layer increases with the increasing of wire speed. This indicates that more amorphous silicon is generated. There is both compressive stress and tensile stress on the surface layer of the silicon wafer. The residual tensile stress is between 0 and 200 MPa, and the compressive stress is between 0 and 300 MPa for the experimental results of this paper. Moreover, the residual stress increases with the increase of wire speed, indicating more amorphous silicon generated as well.


2021 ◽  
Vol 1165 ◽  
pp. 113-130
Author(s):  
Romyani Goswami

In photovoltaic system the major challenge is the cost reduction of the solar cell module to compete with those of conventional energy sources. Evolution of solar photovoltaic comprises of several generations through the last sixty years. The first generation solar cells were based on single crystal silicon and bulk polycrystalline Si wafers. The single crystal silicon solar cell has high material cost and the fabrication also requires very high energy. The second generation solar cells were based on thin film fabrication technology. Due to low temperature manufacturing process and less material requirement, remarkable cost reduction was achieved in these solar cells. Among all the thin film technologies amorphous silicon thin film solar cell is in most advanced stage of development and is commercially available. However, an inherent problem of light induced degradation in amorphous silicon hinders the higher efficiency in this kind of cell. The third generation silicon solar cells are based on nano-crystalline and nano-porous materials. Hydrogenated nanocrystalline silicon (nc-Si:H) is becoming a promising material as an absorber layer of solar cell due to its high stability with high Voc. It is also suggested that the cause of high stability and less degradation of certain nc-Si:H films may be due to the improvement of medium range order (MRO) of the films. During the last ten years, organic, polymer, dye sensitized and perovskites materials are also attract much attention of the photovoltaic researchers as the low budget next generation PV material worldwide. Although most important challenge for those organic solar cells in practical applications is the stability issue. In this work nc-Si:H films are successfully deposited at a high deposition rate using a high pressure and a high power by Radio Frequency Plasma Enhanced Chemical Vapor Deposition (RF PECVD) technique. The transmission electron microscopy (TEM) studies show the formations of distinct nano-sized grains in the amorphous tissue with sharp crystalline orientations. Light induced degradation of photoconductivity of nc-Si:H materials have been studied. Single junction solar cells and solar module were successfully fabricated using nanocrystalline silicon as absorber layer. The optimum cell is 7.1 % efficient initially. Improvement in efficiency can be achieved by optimizing the doped layer/interface and using Ag back contact.


1994 ◽  
Vol 358 ◽  
Author(s):  
W. B. Dubbelday ◽  
S. D. Russell ◽  
K. L. Kavanagh

ABSTRACTIn previous work we reported that porous silicon (PS) films formed using a dilute HF:HNO3 chemical etch on polycrystalline, implant damaged single crystal, or amorphous starting material have luminescent characteristics that differ from PS fabricated on single crystal silicon1. Polycrystalline and implant damaged porous silicon exhibits brighter luminescence compared to single crystal silicon etched under identical conditions. No photoluminescence is detected from the porous amorphous silicon. In this work these effects are examined using HF:NaNO2 solutions with freely available NO2. The accelerated etching effects from work damage are reduced, and the PS from polycrystalline and implant damaged silicon luminesce with the same intensity as the PS from single crystal silicon. Again, etched amorphous silicon does not luminesce. TEM and EDX porosity measurements are used to determine the differences in structure and etching characteristics between the luminescent and non-luminescent materials.


Coatings ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 586
Author(s):  
Weijia Guo ◽  
Senthil Kumar Anantharajan ◽  
Kui Liu ◽  
Hui Deng

Electrochemical oxidation (ECO) has been used widely to oxidize single crystal Si wafers. Aiming at optimizing the ECO assisted machining methods, the oxidation behaviors of single- crystal silicon (100) wafer under potentiostatic mode are experimentally investigated. It is shown that the Si wafer can be electrochemically oxidized and the oxidized film thickness reaches to 239.6 nanometers in 20 min. The hardness of the oxidized surface is reduced by more than 50 percent of the original surface. The results indicate that the oxide thickness and the hardness can be controlled by changing the voltage. Based on the experimental findings, a hypothesis on the ECO mechanism under potentiostatic mode was proposed to explain the fluctuations of current density under specific applied voltage. The occurrence of the multiple peaks in the current density curve during the oxidation process is due to the formation of discharge channels, which was initiated from the defects at the interface between the oxide bottom and the substrate. This breaks the electrical isolation and leads to the discontinuous growth of the electrochemical oxide layer. The present work contributes to the fundamental understanding of the ECO behaviors for the single-crystal Si (100) wafer under potentiostatic mode.


2000 ◽  
Vol 609 ◽  
Author(s):  
Brian J. Greene ◽  
Joseph Valentino ◽  
Judy L. Hoyt ◽  
James F. Gibbons

ABSTRACTThe fabrication of 250 Å thick, undoped, single crystal silicon on insulator by lateral solid phase epitaxial growth from amorphous silicon on oxide patterned (001) silicon substrates is reported. Amorphous silicon was grown by low pressure chemical vapor deposition at 525°C using disilane. Annealing at temperatures between 540 and 570°C is used to accomplish the lateral epitaxial growth. The process makes use of a Si/Si1-xGex/Si stacked structure and selective etching. The thin Si1-xGex etch stop layer (x=0.2) is deposited in the amorphous phase and crystallized simultaneously with the Si layers. The lateral growth distance of the epitaxial region was 2.5 μm from the substrate seed window. This represents a final lateral to vertical aspect ratio of 100:1 for the single crystal silicon over oxide regions after selective etching of the top sacrificial Si layer. The effects of Ge incorporation on the lateral epitaxial growth process are also discussed. The lateral epitaxial growth rate of 20% Ge alloys is enhanced by roughly a factor of three compared to the rate of Si films at an anneal temperature of 555°C. Increased random nucleation rates associated with Ge alloy films are shown to be an important consideration when employing Si1-xGex to enhance lateral growth or as an etch stop layer.


1997 ◽  
Vol 477 ◽  
Author(s):  
Katsuyuki Sekine ◽  
Geun-Min Choi ◽  
Yuji Saito ◽  
Tadahiro Ohmi

ABSTRACTWe have studied native oxide growth behavior on silicon surface with various resistivity in ultra pure water (UPW), SPM (sulfuric acid-hydrogen peroxide mixture, H2SO4:H2O2 = 4:1) cleaning and UPW contaminated with CuF2 by X-Ray photoelectron spectroscopy (XPS). The results show that the native oxide growth behavior in UPW is different from that in UPW contaminated with CuF2 and that grown by SPM cleaning. Native oxide thickness grown in UPW depends on resistivity. Native oxide thickness grown during SPM cleaning has the relationship of steric hinderance effect. However, in CuF2 solution, native oxide thickness is more influenced by the redox reaction between Cu ions and silicon atoms.


2002 ◽  
Vol 715 ◽  
Author(s):  
A.M. Myasnikov ◽  
M.C. Poon ◽  
P.C. Chan ◽  
K.L. Ng ◽  
M.S. Chan ◽  
...  

AbstractDuring metal induced lateral crystallization (MILC) of amorphous silicon (a-Si) the size and quality of obtained film depend on nickel penetration and it is very important to know about nickel diffusion at recrystallization process. The nickel has penetrated during annealing on surface of a-Si inducing the recrystallization process, which has changed the mechanism of diffusion on surface of a-Si to the mechanism of diffusion on surface of single crystal silicon and in single crystal silicon. Also the effect of thickness of nickel and a-Si film are discussed.


2011 ◽  
Vol 121-126 ◽  
pp. 2989-2993
Author(s):  
Wern Dare Jheng ◽  
Shao Hsien Chen ◽  
Zhi Hong Lin

When the petrochemical raw materials continue to rise, resulting in the demand for solar power to increase 25-30% annually. So solar power is currently the most practical and efficient best alternative energy sources. silicon solar cells is now the main raw material, which can be divided into: single-crystal silicon, polycrystalline silicon and amorphous silicon. The most efficiency is single crystal silicon solar cells, polycrystalline silicon solar cells yield larger and more expensive, amorphous silicon solar cell has the lowest price but the worst efficiency. Solar module packaging can produce the required voltage and current, and blocking the water to increase product life. Because the color of solar cells are usually black, is not easy to integrate into the environment. If we can use color packaging material to make solar modules, will be applied to toys, gifts, landscape, lighting and other everyday products, resulting in a more perfect match. This article will explore a range of color package parameters and the relative conversion efficiency of solar cell modules.


Sign in / Sign up

Export Citation Format

Share Document