potentiostatic mode
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 12)

H-INDEX

4
(FIVE YEARS 0)

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7912
Author(s):  
Nikola Macháčková ◽  
Jitřenka Jírů ◽  
Vojtěch Hybášek ◽  
Jaroslav Fojt

In the field of orthopedic or dental implants, titanium and its alloys are most commonly used because of their excellent mechanical and corrosion properties and good biocompatibility. After implantation into the patient’s body, there is a high risk of developing bacterial inflammation, which negatively affects the surrounding tissues and the implant itself. Early detection of inflammation could be done with a pH sensor. In this work, pH-sensitive systems based on TiO2-Ru and TiO2-RuO2 combinations were fabricated and investigated. As a base material, Ti-6Al-4V alloy nanostructured by anodic oxidation was used. Ruthenium was successfully deposited on nanotubular TiO2 using cyclic polarization, galvanostatic and potentiostatic mode. Potentiostatic mode proved to be the most suitable. The selected samples were oxidized by cyclic polarization to form a TiO2-RuO2 system. The success of the oxidation was confirmed by XPS analysis. The electrochemical response of the systems to pH change was measured in saline solution using different techniques. The measurement of open circuit potential showed that unoxidized samples (TiO2-Ru) exhibited sub-Nernstian behavior (39.2 and 35.8 mV/pH). The oxidized sample (TiO2-RuO2) containing the highest amount of Ru exhibited super-Nernstian behavior (67.3 mV/pH). The Mott–Schottky analysis proved to be the best method. The use of the electrochemical impedance method can also be considered, provided that greater stability of the samples is achieved.


2021 ◽  
Author(s):  
Liang Zeng ◽  
Taizheng Wu ◽  
Ting Ye ◽  
Tangming Mo ◽  
Rui Qiao ◽  
...  

Abstract Molecular modeling can study the energy storage of supercapacitors at the atomistic level and has become indispensable in this research. The constant potential method (CPM) allows keeping the electric potential uniform on the electrode, which is essential for a realistic description of the charge repartition and dynamics process in supercapacitors. Prior CPM studies have been limited to the potentiostatic mode. Though widely adopted in the experiment, the galvanostatic mode has been rarely investigated in CPM simulations due to a lack of effective methods. In this work, we developed a modeling approach to simulating the galvanostatic charge-discharge of supercapacitors under constant potential (GCD-CPM). We show that, for nanoporous electrodes, GCD-CPM can capture supercapacitor dynamics in excellent agreement with experimental measurements and delineate the ion adsorption-desorption dynamics underlying the hysteresis with molecular resolutions during charging and discharging. Therefore, this GCD-CPM modeling could open up new avenues for exploring the rich physics and electrochemistry of supercapacitor dynamics.


2021 ◽  
Vol 21 (1) ◽  
pp. 32-48
Author(s):  
Svetlana S. Popova ◽  
◽  
Hussein Ali Hussein ◽  
Lyubov’ N. Olshanskaya ◽  
Sergei V. Arzamastsev ◽  
...  

It was established that at the cathodic treatment of titanium in aqueous dimethyl sulfoxide solutions of sodium molybdate, containing phosphoric acid, at the potential of the cathodic incorporation of sodium (Ec = −2.6 V) in the potentiostatic mode, the composition formed on the electrode surface layer depended not only on the composition of the solution, but also on the volume ratio of the aqueous electrolyte solution and the organic solvent (dimethyl sulfoxide).


Biosensors ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 45
Author(s):  
Mauro Tomassetti ◽  
Emanuele Dell’Aglio ◽  
Mauro Castrucci ◽  
Maria Pia Sammartino ◽  
Luigi Campanella ◽  
...  

This paper reports the analytical detection and energetic properties of a glucose-fed Direct Catalytic Fuel Cell (DCFC) operated in association with yeast cells (Saccharomyces Cerevisiae). The cell was tested in a potentiostatic mode, and the operating conditions were optimized to maximize the current produced by a given concentration of glucose. Results indicate that the DCFC is characterized by a glucose detection limit of the order to 21 mmol L−1. The cell was used to estimate the “pool” of carbohydrate content in commercial soft drinks. Furthermore, the use of different carbohydrates, such as fructose and sucrose, has been shown to result in a good current yield.


2021 ◽  
pp. 3-6
Author(s):  
Boytsova Elena ◽  
◽  
Voroshilov Fedor ◽  
Leonova Liliya ◽  
◽  
...  

The electrochemical and gravimetric methods were used to study the effect of nitrogen using in the reaction mixture during magnetron deposition on the Ti-O-N films corrosion-electrochemical behavior. Polarization studies of the films electrochemical dissolution in aque-ous solution of 3 % NaCl in a potentiostatic mode are presented. It was found that upon dis-solution of the films, passivation, activation, and passivation of the coating surface are ob-served, associated with the formation of oxide films and titanium chlorides on the sample sur-face. It has been proved that thin films obtained with a high nitrogen content exhibit higher corrosion resistance. In this work, the following corrosion parameters were calculated: mass, depth and current indicators.


2020 ◽  
Author(s):  
Luca Capaldo ◽  
Lorenzo L. Quadri ◽  
Daniele Merli ◽  
Davide Ravelli

We report herein a photoelectrocatalytic strategy for the smooth preparation of 2-alkylbenzothiazoles via the cross-dehydrogenative coupling of unactivated aliphatic hydrogen donors (e.g. alkanes) with benzothiazoles. We used tetrabutylammonium decatungstate (TBADT) as the photocatalyst to cleave the strong C(sp3)-H bonds embedded in the chosen substrates via Hydrogen Atom Transfer (HAT), while electrochemistry ensured the success of this net-oxidative transformation by scavenging the extra electrons. The reaction progress was monitored through kinetic analysis, highlighting the transient formation of the redox-neutral adduct 2-alkylbenzothiazoline. Further cyclic voltammetry and laser flash photolysis experiments unveiled the chameleonic behavior of TBADT that features a three-fold role: HAT photocatalyst to activate alkanes, photoredox catalyst to activate the 2-alkylbenzothiazoline and electrocatalyst to promote the oxidation of short-lived radical intermediates. The adopted potentiostatic mode allowed to tame the multi-faceted reactivity of TBADT and to ensure its recovery after each catalytic cycle with a very high faradaic efficiency. We proved the versatility of the proposed approach by replacing the potentiostat with a couple of cheap batteries in the preparation of the desired products.<br>


2020 ◽  
Author(s):  
Luca Capaldo ◽  
Lorenzo L. Quadri ◽  
Daniele Merli ◽  
Davide Ravelli

We report herein a photoelectrocatalytic strategy for the smooth preparation of 2-alkylbenzothiazoles via the cross-dehydrogenative coupling of unactivated aliphatic hydrogen donors (e.g. alkanes) with benzothiazoles. We used tetrabutylammonium decatungstate (TBADT) as the photocatalyst to cleave the strong C(sp3)-H bonds embedded in the chosen substrates via Hydrogen Atom Transfer (HAT), while electrochemistry ensured the success of this net-oxidative transformation by scavenging the extra electrons. The reaction progress was monitored through kinetic analysis, highlighting the transient formation of the redox-neutral adduct 2-alkylbenzothiazoline. Further cyclic voltammetry and laser flash photolysis experiments unveiled the chameleonic behavior of TBADT that features a three-fold role: HAT photocatalyst to activate alkanes, photoredox catalyst to activate the 2-alkylbenzothiazoline and electrocatalyst to promote the oxidation of short-lived radical intermediates. The adopted potentiostatic mode allowed to tame the multi-faceted reactivity of TBADT and to ensure its recovery after each catalytic cycle with a very high faradaic efficiency. We proved the versatility of the proposed approach by replacing the potentiostat with a couple of cheap batteries in the preparation of the desired products.<br>


Coatings ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 586
Author(s):  
Weijia Guo ◽  
Senthil Kumar Anantharajan ◽  
Kui Liu ◽  
Hui Deng

Electrochemical oxidation (ECO) has been used widely to oxidize single crystal Si wafers. Aiming at optimizing the ECO assisted machining methods, the oxidation behaviors of single- crystal silicon (100) wafer under potentiostatic mode are experimentally investigated. It is shown that the Si wafer can be electrochemically oxidized and the oxidized film thickness reaches to 239.6 nanometers in 20 min. The hardness of the oxidized surface is reduced by more than 50 percent of the original surface. The results indicate that the oxide thickness and the hardness can be controlled by changing the voltage. Based on the experimental findings, a hypothesis on the ECO mechanism under potentiostatic mode was proposed to explain the fluctuations of current density under specific applied voltage. The occurrence of the multiple peaks in the current density curve during the oxidation process is due to the formation of discharge channels, which was initiated from the defects at the interface between the oxide bottom and the substrate. This breaks the electrical isolation and leads to the discontinuous growth of the electrochemical oxide layer. The present work contributes to the fundamental understanding of the ECO behaviors for the single-crystal Si (100) wafer under potentiostatic mode.


Sign in / Sign up

Export Citation Format

Share Document