Microstructure of InGaN Quantum Wells

1997 ◽  
Vol 482 ◽  
Author(s):  
F. A. Ponce ◽  
D. Cherns ◽  
W. Goetz ◽  
R. S. Kern

AbstractThe microstructure of lnxGal-xN quantum wells with intermediate indium concentrations (x = 0.28 and 0.52) has been studied using transmission electron microscopy. High-resolution lattice images and dark-field images taken under high tilt conditions indicate that the quantum wells are inhomogeneous in character. Most of the area of the quantum wells is pseudomorphic with the GaN adjacent layer. However, misfit dislocations are sometimes observed, although with an inhomogeneous distribution. Strained cluster regions are observed in the high-indium concentration quantum wells, with dimensions ranging fi'om 3 to 10 nm in diameter. Evidence is presented suggesting the extent of clustering depends on the exact orientation of the growth surface which is related to the columnar nature of the GaN/sapphire epitaxy.

2009 ◽  
Vol 1184 ◽  
Author(s):  
Roy Geiss ◽  
Kris Bertness ◽  
Alexana Roshko ◽  
David Read

AbstractStrains in GaN nanowires with InGaN quantum wells (QW) were measured from transmission electron microscope (TEM) images. The nanowires, all from a single growth run, are single crystals of the wurtzite structure that grow along the <0001> direction, and are approximately 1000 nm long and 60 nm to 130 nm wide with hexagonal cross-sections. The In concentration in the QWs ranges from 12 to 15 at %, as determined by energy dispersive spectroscopy in both the transmission and scanning electron microscopes. Fourier transform (FT) analyses of <0002> and <1100> lattice images of the QW region show a 4 to 10 % increase of the c-axis lattice spacing, across the full specimen width, and essentially no change in the a-axis value. The magnitude of the changes in the c-axis lattice spacing far exceeds values that would be expected by using a linear Vegard's law for GaN – InN with the measured In concentration. Therefore the increases are considered to represent tensile strains in the <0001> direction. Visual representations of the location and extent of the strained regions were produced by constructing inverse FT (IFT) images from selected regions in the FT covering the range of c-axis lattice parameters in and near the QW. The present strain values for InGaN QW in nanowires are larger than any found in the literature to date for other forms of InxGa1-xN (QW)/GaN.


2015 ◽  
Vol 21 (4) ◽  
pp. 994-1005 ◽  
Author(s):  
Daniel Carvalho ◽  
Francisco M. Morales ◽  
Teresa Ben ◽  
Rafael García ◽  
Andrés Redondo-Cubero ◽  
...  

AbstractWe present a simple and robust method to acquire quantitative maps of compositional fluctuations in nanostructures from low magnification high-angle annular dark field (HAADF) micrographs calibrated by energy-dispersive X-ray (EDX) spectroscopy in scanning transmission electron microscopy (STEM) mode. We show that a nonuniform background in HAADF-STEM micrographs can be eliminated, to a first approximation, by use of a suitable analytic function. The uncertainty in probe position when collecting an EDX spectrum renders the calibration of HAADF-STEM micrographs indirect, and a statistical approach has been developed to determine the position with confidence. Our analysis procedure, presented in a flowchart to facilitate the successful implementation of the method by users, was applied to discontinuous InGaN/GaN quantum wells in order to obtain quantitative determinations of compositional fluctuations on the nanoscale.


2004 ◽  
Vol 817 ◽  
Author(s):  
Tihomir Gugov ◽  
Mark Wistey ◽  
Homan Yuen ◽  
Seth Bank ◽  
James S. Harris

AbstractIn the past decade, the quaternary GaInNAs alloy has emerged as a very promising material for lasers in the 1.2-1.6 μm range with application in telecommunication fiber-optic networks. While most of the challenges in growing high quality laser material with emission wavelength out to 1.3 μm have been successfully resolved, extending the emission beyond 1.3 μm has proven to be quite difficult. Achieving emission out to 1.5 μm requires higher In (up to 40%) and N (up to 2%) compositions. This makes the growth of this thermodynamically unstable alloy quite difficult with phase segregation occurring even at lower growth temperatures. Recently, adding small amounts of antimony has dramatically improved the quality of the material and high luminescence has been demonstrated at wavelengths beyond 1.5 μm. In this study, high-resolution transmission electron microscopy (HRTEM) was used in a novel way in conjunction with dark-field (DF) TEM to elucidate the role of antimony in improving the material quality. The results show that antimony improves the material uniformity via reduction of the local compositional fluctuations of indium.


Nanomaterials ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 872 ◽  
Author(s):  
Thomas Walther

Strategies are discussed to distinguish interdiffusion and segregation and to measure key parameters such as diffusivities and segregation lengths in semiconductor quantum dots and quantum wells by electron microscopy methods. Spectroscopic methods are usually necessary when the materials systems are complex while imaging methods may suffice for binary or simple ternary compounds where atomic intermixing is restricted to one type of sub-lattice. The emphasis on methodology should assist microscopists in evaluating and quantifying signals from electron micrographs and related spectroscopic data. Examples presented include CdS/ZnS core/shell particles and SiGe, InGaAs and InGaN quantum wells.


2010 ◽  
Vol 16 (5) ◽  
pp. 604-613 ◽  
Author(s):  
T. Volkenandt ◽  
E. Müller ◽  
D.Z. Hu ◽  
D.M. Schaadt ◽  
D. Gerthsen

AbstractHigh-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) images of electron-transparent samples show dominant atomic number (Z-) contrast with a high lateral resolution. HAADF STEM at low electron energies <30 keV is applied in this work for quantitative composition analyses of InGaAs quantum wells. To determine the local composition, normalized experimental image intensities are compared with results of Monte Carlo simulations. For verification of the technique, InGaAs/GaAs quantum-well structures with known In concentration are used. Transmission electron microscopy samples with known thickness are prepared by the focused-ion-beam technique. The method can be extended to other material systems and is particularly promising for the analysis of materials that are sensitive toward knock-on damage.


Author(s):  
Z.L. Wang ◽  
J. Bentley ◽  
R.E. Clausing ◽  
L. Heatherly ◽  
L.L. Horton

Microstructural studies by transmission electron microscopy (TEM) of diamond films grown by chemical vapor deposition (CVD) usually involve tedious specimen preparation. This process has been avoided with a technique that is described in this paper. For the first time, thick as-grown diamond films have been examined directly in a conventional TEM without thinning. With this technique, the important microstructures near the growth surface have been characterized. An as-grown diamond film was fractured on a plane containing the growth direction. It took about 5 min to prepare a sample. For TEM examination, the film was tilted about 30-45° (see Fig. 1). Microstructures of the diamond grains on the top edge of the growth face can be characterized directly by transmitted electron bright-field (BF) and dark-field (DF) images and diffraction patterns.


Author(s):  
Malcolm Brown ◽  
Reynolds M. Delgado ◽  
Michael J. Fink

While light microscopy has been used to image sub-micron objects, numerous problems with diffraction-limitations often preclude extraction of useful information. Using conventional dark-field and phase contrast light microscopy coupled with image processing, we have studied the following objects: (a) polystyrene beads (88nm, 264nm, and 557mn); (b) frustules of the diatom, Pleurosigma angulatum, and the T-4 bacteriophage attached to its host, E. coli or free in the medium. Equivalent images of the same areas of polystyrene beads and T-4 bacteriophages were produced using transmission electron microscopy.For light microscopy, we used a Zeiss universal microscope. For phase contrast observations a 100X Neofluar objective (N.A.=1.3) was applied. With dark-field, a 100X planachromat objective (N.A.=1.25) in combination with an ultra-condenser (N.A.=1.25) was employed. An intermediate magnifier (Optivar) was available to conveniently give magnification settings of 1.25, 1.6, and 2.0. The image was projected onto the back focal plane of a film or television camera with a Carl Zeiss Jena 18X Compens ocular.


2020 ◽  
Vol 75 (11) ◽  
pp. 913-919
Author(s):  
Frank Krumeich

AbstractSince the 1970s, high-resolution transmission electron microscopy (HRTEM) is well established as the most appropriate method to explore the structural complexity of niobium tungsten oxides. Today, scanning transmission electron microscopy (STEM) represents an important alternative for performing the structural characterization of such oxides. STEM images recorded with a high-angle annular dark field (HAADF) detector provide not only information about the cation positions but also about the distribution of niobium and tungsten as the intensity is directly correlated to the local scattering potential. The applicability of this method is demonstrated here for the characterization of the real structure of Nb7W10O47.5. This sample contains well-ordered domains of Nb8W9O47 and Nb4W7O31 besides little ordered areas according to HRTEM results. Structural models for Nb4W7O31 and twinning occurring in this phase have been derived from the interpretation of HAADF-STEM images. A remarkable grain boundary between well-ordered domains of Nb4W7O31 and Nb8W9O47 has been found that contains one-dimensionally periodic features. Furthermore, short-range order observed in less ordered areas could be attributed to an intimate intergrowth of small sections of different tetragonal tungsten bronze (TTB) based structures.


Sign in / Sign up

Export Citation Format

Share Document