The Doping and Characterization of Erbium-Implanted Gan

1997 ◽  
Vol 482 ◽  
Author(s):  
J. T. Torvik ◽  
R. J. Feuerstein ◽  
C. H. Qiu ◽  
J. I. Pankove ◽  
F. Namavar

AbstractStrong room temperature Er-related photoluminescence (PL) and electroluminescence (EL) at 1539 nm was observed from Er and 0 implanted n-type GaN. Good device performance requires that the Er-related excitation and emission processes be efficient. Single exponential PL and EL time decays with l/e lifetimes of 2.33 ms and 1.74 ms indicates highly efficient radiative process. The Er excitation process in GaN was studied by comparing the efficiency of direct Erabsorption, electron-hole pair recombination, and hot electron (impact) excitation. The strongest Er luminescence and the lowest pump power was found using impact excitation.

2000 ◽  
Vol 638 ◽  
Author(s):  
Z. Gaburro ◽  
L. Pavesi ◽  
G. Pucker ◽  
P. Bellutti

AbstractWe report photoluminescence and electroluminescence at room temperature in diodes based on Si/SiO2 multilayers. The multilayers are fabricated by alternating Si and SiO2 layers, whose thickness is, respectively, 2 and 5 nanometers. In photoluminescence, a single band is observed, centered at 800 nm, which is due to electron-hole pair recombination under quantum confinement. On the other hand, in electroluminescence, two bands are reported. The first band is in the infrared spectrum, and is blackbody radiation. The second band is visible, and is originated by relaxation of a single type of electrical carrier (electrons), as suggested by a fast decay time (less than 0.1 µs). Possible mechanisms can be hot-electron relaxation or coupling with surface plasmon-polaritons.


2007 ◽  
Vol 131-133 ◽  
pp. 595-600
Author(s):  
S. Prucnal ◽  
L. Rebohle ◽  
Wolfgang Skorupa

The temperature quenching mechanisms of the electroluminescence (EL) and the reactivation of the rare earth luminescent centres by the flash lamp annealing (FLA) made after hot electron injection into the SiO2 layer implanted by Tb and Gd was investigated. An increase of the temperature from room temperature up to 150oC reduces the gate voltage of about 3 V and increases the rate of the EL quenching process and the degradation of the Metal-Oxide-Silicon Light Emitting Diode (MOSLED) structure by a of factor of three. On the other hand, the post-injection FLA reactivates the RE centres switched off by electrons trapped around them during hot electron impact excitation, increasing the operating time of the MOSLEDs devices.


2007 ◽  
Vol 534-536 ◽  
pp. 105-108
Author(s):  
Zhong Qing Liu ◽  
Zheng Hua Li ◽  
Yan Ping Zhou ◽  
Chang Chun Ge

The Ag/TiO2-xNx nanoparticles were synthesized by photochemical deposition with irradiation of visible light in a TiO2-XNX suspension system. The prepared products were characterized by means of XRD, Uv-vis, and FEM. Its photocatalytic activity was investigated by the decomposition of methylene blue (MB) solution under illumination of visible and ultraviolet light, respectively. Compared to TiO2-xNx, the photocatalytic activity of as–prepared Ag/TiO2-xNx is obviously enhanced due to the decreasing recombination of a photoexcited electron-hole pair. The mechanism in which photocatalytic activity is enhanced is discussed in detail.


Catalysts ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1455
Author(s):  
Qi Li ◽  
Wanli Liu ◽  
Xuejian Xie ◽  
Xianglong Yang ◽  
Xiufang Chen ◽  
...  

Co-catalyst deposition is used to improve the surface and electrical properties of photocatalysts. In this work, MoSx/CdIn2S4 nanocomposites were prepared by a facile hydrothermal and photodeposition route. The basic crystalline phases and morphology of the as-prepared samples were determined, and these results showed that MoSx was tightly anchored onto CdIn2S4 by sharing the same S atom. In the hydrogen production experiments, MoSx/CdIn2S4-40 displayed the optimal photocatalytic hydrogen production yield in 4 h. The H2 evolution rate reached 2846.73 μmol/g/h, which was 13.6-times higher than that of pure CdIn2S4. Analyzing the photocatalytic enhancement mechanisms revealed that this unique structure had a remarkable photogenerated electron-hole pair separation efficiency, rapid charge carrier transfer channels, and more abundant surface reaction sites. The use of co-catalyst (MoSx) greatly improved the photocatalytic activity of CdIn2S4.


Nano Letters ◽  
2013 ◽  
Vol 13 (12) ◽  
pp. 6091-6097 ◽  
Author(s):  
M. Tuan Trinh ◽  
Matthew Y. Sfeir ◽  
Joshua J. Choi ◽  
Jonathan S. Owen ◽  
Xiaoyang Zhu

1998 ◽  
Vol 507 ◽  
Author(s):  
Howard M. Branz

ABSTRACTA new microscopic and kinetic model of light-induced metastability in hydrogenated amorphous silicon (a-Si:H) is described. Recombination and trapping of photoinduced carriers excite hydrogen from deep Si-H bonds into a mobile configuration, leaving a dangling bond (DB) defect at the site of excitation. Normally, mobile H are recaptured at DB defects and no metastability or net DB production results. However, when two mobile H collide, they form a metastable two-hydrogen complex and leave two spatially-uncorrelated Staebler-Wronski DBs. Thermal and light-induced annealing occur when mobile H are excited from the metastable two-H complex; they diffuse and are recaptured to DBs. The microscopic model is entirely compatible with electron-spin-resonance results showing neither DB-DB nor DB-H spatial correlation of the light-induced DBs. The model leads to new differential equations describing the evolution of the mobile H and DB densities. These equation equations explain the observed room-temperature Ndb∼G2/3t1/3 dependence of DB creation upon the electron-hole pair creation rate (G) and time. The model also accounts for both t1/3-kinetics at 4.2K and t1/2-kinetics under laser-pulse soaking. Neither of these results can be explained within the prevailing electron-hole pair recombination model.


2011 ◽  
Vol 89 (5) ◽  
pp. 513-519 ◽  
Author(s):  
D.B. Thorn ◽  
A. Gumberidze ◽  
S. Trotsenko ◽  
D. Banaś ◽  
H. Beyer ◽  
...  

The population of magnetic sublevels in hydrogen-like uranium ions has been investigated in relativistic ion–atom collisions by observing the subsequent X-ray emission. Using the gas target at the experimental storage ring facility we observed the angular emission of Lyman-α radiation from hydrogen-like uranium ions. The alignment parameter for three different interaction energies was measured and found to agree well with theory. In addition, the use of different gas targets allowed for the electron-impact excitation process to be observed.


Sign in / Sign up

Export Citation Format

Share Document