Electron Emission Properties of Si Field Emitter Arrays Coated With Nanocrystalline Diamond From Fullerene Precursors

1997 ◽  
Vol 498 ◽  
Author(s):  
T. G. McCauley ◽  
T. D. Corrigan ◽  
A. R. Krauss ◽  
O. Auciello ◽  
D. Zhou ◽  
...  

ABSTRACTIn this paper, we report on a substantial lowering of the threshold field for electron field emission from Si field emitter arrays (FEA), which have been coated with a thin layer of nanocrystalline diamond by microwave plasma-assisted chemical vapor deposition (MPCVD) from fullerene (C60) and methane (CH4) precursors. The field emission characteristics were investigated and the emission sites imaged using photoelectron emission microscopy (PEEM). Electron emission from these Si FEAs coated with nanocrystalline diamond was observed at threshold fields as low as 3 V/μm, with effective work functions as low as 0.59 eV.

2008 ◽  
Vol 8 (8) ◽  
pp. 4141-4145 ◽  
Author(s):  
Huang-Chin Chen ◽  
Umesh Palnitkar ◽  
Huan Niu ◽  
Hsiu-Fung Cheng ◽  
I-Nan Lin

Nanocrystalline diamond films prepared by microwave plasma enhanced chemical vapor deposition (MPECVD) were implanted using 110 keV nitrogen ions under fluence ranging from 1013–1014 ions/cm2. Scanning Electron Microscopy (SEM) and Raman spectroscopy were used to analyze the changes in the surface of the films before and after ion implantation. Results show that with nitrogen ion implantation in nanocrystalline diamond film cause to decrease in diamond crystallinity. The field emission measurement shows a sharp increase in current density with increase in dose. The ion implantation also alters the turn on field. It is observed that the structural damage caused by ion implantation plays a significant role in emission behaviour of nanocrystalline diamonds.


2020 ◽  
Vol 15 (2) ◽  
pp. 276-283 ◽  
Author(s):  
Junqi Xu ◽  
Yanrui Wang ◽  
Wenjie Wang ◽  
Zijun Xu ◽  
Yonglei Jia ◽  
...  

Large-scale PrB6 nanowires were fabricated by an effective, catalyst-free, and a simple low-pressure chemical vapor deposition (LPCVD) process. These nanowires, characterized in detail by various analytical instruments, demonstrated the large aspect ratio and high single-crystalline grown along the [001] crystal direction perpendicular to the (001) crystal plane. The field electron emission equipment tests manifest that the asgrown PrB6 products have a low turn-on field (Eto, 2.32 V/μm), a threshold field (Ethr, 4.28 V/μm), a high field enhancement factor (β, 2336), as well as a stable current-density (J) of field-emission. The relationships of the field electron emission parameters, such as J, Eto, and β versus cathode gap (d), have been established when d is increased from 500 μm to 800 μm. The outstanding properties suggest that the PrB6 products may be promising emitters in the cold-field-emission cathode application.


2016 ◽  
Vol 23 (03) ◽  
pp. 1650011
Author(s):  
YU QIAO ◽  
TING QI ◽  
JIE LIU ◽  
ZHIYONG HE ◽  
SHENGWANG YU ◽  
...  

Ultrananocrystalline diamond (UNCD) films on silicon were prepared by microwave plasma chemical vapor deposition (MPCVD) method using argon-rich CH4/H2/Ar plasmas. The graphene sheets synthesized by chemical vapor deposition (CVD) were successfully transferred on to the UNCD surface to fabricate electron field emission (EFE) property-enhanced graphene/UNCD films. The surface morphology, structure and composition of the graphene/UNCD double-layered structures were characterized by scanning electron microscope (SEM), atomic force microscope (AFM), Raman spectroscopy and grazing incidence X-ray diffraction (GXRD). GXRD clearly shows the characteristic diffraction peaks of both diamond and graphene. The Raman spectrum shows the characteristic band of diamond at 1332[Formula: see text]cm[Formula: see text] and D, G and 2D bands of graphene at 1360, 1550 and 2610[Formula: see text]cm[Formula: see text], respectively. The EFE behavior of the composite films can be turned on at [Formula: see text][Formula: see text]V/[Formula: see text]m, attaining a current density of 0.065[Formula: see text]mA/cm2 at an applied field of 7.3[Formula: see text]V/[Formula: see text]m.


2002 ◽  
Vol 16 (06n07) ◽  
pp. 998-1002
Author(s):  
RANGQI CAI ◽  
YATAO ZHANG ◽  
ZHONGSHI YANG ◽  
DEYAN HE ◽  
GUANGHUA CHEN

Nanocrystalline diamond field emitters were deposited by microwave plasma-enhanced chemical vapor deposition using porous Si as host matrixes. Scanning electron microscopy observations showed that the nuclei of diamond occurred at the edges of the etched pores, and the nanoscale diamond grains were partly embedded into the pores of the porous Si. The structure was beneficial to the electron field emission. The electron emission became more stable and the emission current was significantly enchanced comparing with those of the diamond films deposited on Si substrates scratched by diamond powder.


Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1024 ◽  
Author(s):  
Fernando Lloret ◽  
Kamatchi Jothiramalingam Sankaran ◽  
Josué Millan-Barba ◽  
Derese Desta ◽  
Rozita Rouzbahani ◽  
...  

Nanocrystalline diamond (NCD) field emitters have attracted significant interest for vacuum microelectronics applications. This work presents an approach to enhance the field electron emission (FEE) properties of NCD films by co-doping phosphorus (P) and nitrogen (N) using microwave plasma-enhanced chemical vapor deposition. While the methane (CH4) and P concentrations are kept constant, the N2 concentration is varied from 0.2% to 2% and supplemented by H2. The composition of the gas mixture is tracked in situ by optical emission spectroscopy. Scanning electron microscopy, atomic force microscopy (AFM), transmission electron microscopy, and Raman spectroscopy are used to provide evidence of the changes in crystal morphology, surface roughness, microstructure, and crystalline quality of the different NCD samples. The FEE results display that the 2% N2 concentration sample had the best FEE properties, viz. the lowest turn-on field value of 14.3 V/µm and the highest current value of 2.7 µA at an applied field of 73.0 V/µm. Conductive AFM studies reveal that the 2% N2 concentration NCD sample showed more emission sites, both from the diamond grains and the grain boundaries surrounding them. While phosphorus doping increased the electrical conductivity of the diamond grains, the incorporation of N2 during growth facilitated the formation of nano-graphitic grain boundary phases that provide conducting pathways for the electrons, thereby improving the FEE properties for the 2% N2 concentrated NCD films.


Sign in / Sign up

Export Citation Format

Share Document