Spectroscopic Studies of Low Dielectric Constant Fluorinated Amorphous Carbon Films for Ulsi Integrated Circuits

1998 ◽  
Vol 524 ◽  
Author(s):  
Yanjun Ma ◽  
Hongning Yang ◽  
J. Guo ◽  
C. Sathe ◽  
A. Agui ◽  
...  

ABSTRACTPerformance of future generations of integrated circuits will be limited by the RC delay caused by on-chip interconnections. Overcoming this limitation requires the deployment of new high conductivity metals such as copper and low dielectric constant intermetal dielectrics (IMD). Fluorinated amorphous carbon (a-CFx) is a promising candidate for replacing SiO2 as the IMD. In this paper we investigated the structure and electronic properties of a-CFx thin films using high-resolution x-ray absorption, emission, and photoelectron spectroscopy. The composition and local bonding information were obtained and correlated with deposition conditions. The data suggest that the structure of the a-CFx is mostly of carbon rings and CF2 chains cross-linked with C atoms. The effects of growth temperature on the structure and the thermal stability of the film are discussed.

2002 ◽  
Vol 149 (7) ◽  
pp. G384 ◽  
Author(s):  
Jia-Min Shieh ◽  
Kou-Chiang Tsai ◽  
Bau-Tong Dai ◽  
Shih-Chin Lee ◽  
Chih-Hung Ying ◽  
...  

2000 ◽  
Vol 612 ◽  
Author(s):  
Sang-Soo Han ◽  
Byeong-Soo Bae

AbstractFluorinated amorphous carbon (a-C:F) thin films were deposited by inductively coupled plasma enhanced chemical vapor deposition (ICP-CVD) with increasing CF4:CH4 gas flow rate ratio, and then annealed with increasing annealing temperature (100, 200, 300, and 400.). We have found the reduction mechanism of the dielectric constant and the thermally stable condition for the a-C:F films. On the basis of the results, the optimal condition to satisfy both the low dielectric constant and the thermal stability is followed as; the a-C:F films have to have the compatible F content to make a compromise between the two properties; the C-Fx bonding configuration has to exist as a form of C-F2 & C-F3 instead of C-F; The films should be somewhat cross-linked structure.


2007 ◽  
Vol 990 ◽  
Author(s):  
Olivier Gourhant ◽  
Vincent Jousseaume ◽  
Laurent Favennec ◽  
Aziz Zenasni ◽  
Patrick Maury ◽  
...  

ABSTRACTThe increase of integrated circuits performances requires ultra-low dielectric constant (ULK) materials to minimize the drawbacks of miniaturization. Amorphous SiOCH are promising candidates for ULK materials as porosity can be introduced via a two steps elaboration. In a first step, organo-silicon species and organic species are co-deposited by PECVD. Then, a thermal annealing, alone or assisted by UV radiation, removes the organic labile phase and creates pore inclusions into the final material. In this work, the extendibility of this porogen approach is investigated in order to lower the dielectric constant. An increase of the porogen loading in hybrid film is studied by tuning the precursors ratio injected in the plasma gas feed. The increase of organic species amount is operated in order to create more pores sites. However, the post-treatment does not lead automatically to higher porosity. Actually, an increase of the porosity is observed only until a porogen loading limit and decreases above this limit. The shrinkage of the film during the post-treatment can explain this limitation. For high ratios of porogen, the film shrinkage increases drastically and leads to a decrease of the porosity finally created. At last, the link between porosity and dielectric constant is enlightened and a minimum in term of K value is reached with both post-treatments: dielectric constant of 2.1 and 2.3 are obtained using respectively thermal treatment and UV curing.


Sign in / Sign up

Export Citation Format

Share Document