Comparison of Release Profiles of Various Growth Factors from Biodegradable Carriers

1998 ◽  
Vol 530 ◽  
Author(s):  
Y. Tabata ◽  
M. Yamamoto ◽  
Y. Ikada

AbstractA biodegradable hydrogel was prepared by glutaraldehyde crosslinking of acidic gelatin with an isoelectric point (IEP) of 5.0 as a carrier to release basic growth factors on the basis of polyion complexation. Basic fibroblast growth factor (bFGF), transforming growth factor β1 (TGF-β1), and bone morphogenetic protein-2 (BMP-2) were sorbed from their aqueous solution into the dried gelatin hydrogels to prepare respective growth factor-incorporating hydrogels. Under an in vitro non-degradation condition, approximately 20 % of incorporated bFGF and TGF-β1 was released from the hydrogels within initial 40 min, followed by no further release, whereas a large initial release of BMP-2 was observed. After subcutaneous implantation of the gelatin hydrogels incorporating 125I-labeled growth factor in the mouse back, the remaining radioactivity was measured to estimate the in vivo release profile of growth factors. Incorporation into gelatin hydrogels enabled bFGF and TGF-β1 to retain in the body for about 15 days and the retention period well correlated with that of the gelatin hydrogel. Taken together, it is likely that the growth factors ionically complexed with acidic gelatin were released in vivo as a result of hydrogel biodegradation. On the contrary, basic BMP-2 did not ionically interact with acidic gelatin, resulting in no sustained released by the present biodegradable carrier system.

2012 ◽  
Vol 32 (4) ◽  
pp. 462-472 ◽  
Author(s):  
Kazuo Serie ◽  
Noboru Fukuda ◽  
Shigeki Nakai ◽  
Hiroyuki Matsuda ◽  
Takashi Maruyama ◽  
...  

ObjectiveEncapsulating peritoneal sclerosis (EPS) is a devastating fibrotic complication in patients treated with peritoneal dialysis (PD). Transforming growth factor β1 (TGF-β1) is a pivotal factor in the induction of EPS.MethodsTo develop pyrrole-imidazole (PI) polyamide, a novel gene silencer, targeted to the TGF-β1 promoter (Polyamide) for EPS, we examined the effects of Polyamide on messenger RNA (mRNA) expression of TGF-β 1, vascular endothelial growth factor (VEGF), and extracellular matrix (ECM) in mesothelial cells in vitro, and on the thickness of injured peritoneum evaluated by histology and high- resolution regional elasticity mapping in rats in vivo.ResultsPolyamide significantly lowered mRNA expression of TGF-β 1 and ECM in vitro. Polyamide labeled with fluorescein isothiocyanate was taken up into the injured peritoneum and was strongly localized in the nuclei of most cells. Polyamide 1 mg was injected intraperitoneally 1 or 3 times in rats receiving a daily intraperitoneal injection of chlorhexidine gluconate and ethanol (CHX) for 14 days. Polyamide significantly suppressed peritoneal thickening and the abundance of TGF-β 1 and fibronectin mRNA, but did not affect expression of VEGF mRNA in the injured peritoneum. Elasticity distribution mapping showed that average elasticity was significantly lower in Polyamide-treated rats than in rats treated solely with CHX.ConclusionsPolyamide suppressed the stiffness, ECM formation, and thickening of the injured peritoneum that occurs during EPS pathogenesis. These data suggest that PI polyamide targeted to the TGF-β 1 promoter will be a specific and feasible therapeutic strategy for patients with EPS.


Blood ◽  
1999 ◽  
Vol 94 (6) ◽  
pp. 1961-1970 ◽  
Author(s):  
Sumio Sakamaki ◽  
Yasuo Hirayama ◽  
Takuya Matsunaga ◽  
Hiroyuki Kuroda ◽  
Toshiro Kusakabe ◽  
...  

Abstract The present study was designed to test the concept that platelets release a humoral factor that plays a regulatory role in megakaryopoiesis. The results showed that, among various hematoregulatory cytokines examined, transforming growth factor-β1 (TGF-β1) was by far the most potent enhancer of mRNA expression of bone marrow stromal thrombopoietin (TPO), a commitment of lineage specificity. The TPO, in turn, induced TGF-β receptors I and II on megakaryoblasts at the midmegakaryopoietic stage; at this stage, TGF-β1 was able to arrest the maturation of megakaryocyte colony-forming units (CFU-Meg). This effect was relatively specific when compared with its effect on burst-forming unit-erythroid (BFU-E) or colony-forming unit–granulocyte-macrophage (CFU-GM). In patients with idiopathic thrombocytopenic purpura (ITP), the levels of both TGF-β1 and stromal TPO mRNA were correlatively increased and an arrest of megakaryocyte maturation was observed. These in vivo findings are in accord with the aforementioned in vitro results. Thus, the results of the present investigation suggest that TGF-β1 is one of the pathophysiological feedback regulators of megakaryopoiesis.


Blood ◽  
2008 ◽  
Vol 112 (9) ◽  
pp. 3650-3660 ◽  
Author(s):  
Jasimuddin Ahamed ◽  
Nathalie Burg ◽  
Keiji Yoshinaga ◽  
Christin A. Janczak ◽  
Daniel B. Rifkin ◽  
...  

Transforming growth factor-β1 (TGF-β1) has potent physiologic and pathologic effects on a variety of cell types at subnanomolar concentrations. Platelets contain 40 times as much TGF-β1 as other cells and secrete it as an inactive (latent) form in complex with latency-associated peptide (LAP), which is disulfide bonded via Cys33 to latent TGF-β binding protein 1 (LTBP-1). Little is known about how latent TGF-β1 becomes activated in vivo. Here we show that TGF-β1 released from platelets or fibroblasts undergoes dramatic activation when subjected to stirring or shear forces, providing a potential mechanism for physiologic control. Thiol-disulfide exchange appears to contribute to the process based on the effects of thiol-reactive reagents and differences in thiol labeling of TGF-β1 before and after stirring or shear. Activation required the presence of LTBP, as TGF-β1 contained in complex with only LAP could not be activated by stirring when studied as either a recombinant purified protein complex or in the platelet releasates or sera of mice engineered to contain an LAP C33S mutation. Release and activation of latent TGF-β1 in vivo was demonstrated in a mouse model 5 minutes after thrombus formation. These data potentially provide a novel mechanism for in vivo activation of TGF-β1.


2005 ◽  
Vol 288 (1) ◽  
pp. F16-F26 ◽  
Author(s):  
Xianghong Zhang ◽  
Junwei Yang ◽  
Yingjian Li ◽  
Youhua Liu

Hepatocyte growth factor (HGF) receptor is a transmembrane receptor tyrosine kinase encoded by the c-met protooncogene. In this study, we demonstrated that c-met expression was upregulated in the kidney after obstructive injury in mice. Because the pattern of c-met induction was closely correlated with transforming growth factor-β1 (TGF-β1) expression in vivo, we further investigated the regulation of c-met expression in renal tubular epithelial (HKC) cells by TGF-β1 in vitro. Real-time RT-PCR and Northern and Western blot analyses revealed that TGF-β1 significantly induced c-met expression in HKC cells, which primarily took place at the gene transcriptional level. Overexpression of inhibitory Smad7 completely abolished c-met induction, indicating its dependence on Smad signaling. Interestingly, TGF-β1-induced c-met expression was also contingent on a functional Sp1, as ablation of Sp1 binding with mithramycin A abrogated c-met induction in HKC cells. Transfection and sequence analysis identified a cis-acting TGF-β1-responsive region in the c-met promoter, in which resided a putative Smad-binding element (SBE) and an adjacent Sp1 site. TGF-β1 not only induced Smad binding to the SBE/Sp1 sites in the c-met promoter, but also enhanced the binding of Sp proteins. Furthermore, Sp1 could form a complex with Smads in a TGF-β1-dependent fashion. These results suggest a novel regulatory mechanism controlling c-met expression by TGF-β1 in renal epithelial cells, in which both Smad and Sp proteins participate and cooperate in activating c-met gene transcription.


Blood ◽  
1999 ◽  
Vol 94 (6) ◽  
pp. 1961-1970 ◽  
Author(s):  
Sumio Sakamaki ◽  
Yasuo Hirayama ◽  
Takuya Matsunaga ◽  
Hiroyuki Kuroda ◽  
Toshiro Kusakabe ◽  
...  

The present study was designed to test the concept that platelets release a humoral factor that plays a regulatory role in megakaryopoiesis. The results showed that, among various hematoregulatory cytokines examined, transforming growth factor-β1 (TGF-β1) was by far the most potent enhancer of mRNA expression of bone marrow stromal thrombopoietin (TPO), a commitment of lineage specificity. The TPO, in turn, induced TGF-β receptors I and II on megakaryoblasts at the midmegakaryopoietic stage; at this stage, TGF-β1 was able to arrest the maturation of megakaryocyte colony-forming units (CFU-Meg). This effect was relatively specific when compared with its effect on burst-forming unit-erythroid (BFU-E) or colony-forming unit–granulocyte-macrophage (CFU-GM). In patients with idiopathic thrombocytopenic purpura (ITP), the levels of both TGF-β1 and stromal TPO mRNA were correlatively increased and an arrest of megakaryocyte maturation was observed. These in vivo findings are in accord with the aforementioned in vitro results. Thus, the results of the present investigation suggest that TGF-β1 is one of the pathophysiological feedback regulators of megakaryopoiesis.


2001 ◽  
Vol 21 (21) ◽  
pp. 7218-7230 ◽  
Author(s):  
Francesc Viñals ◽  
Jacques Pouysségur

ABSTRACT Mouse capillary endothelial cells (1G11 cell line) embedded in type I collagen gels undergo in vitro angiogenesis. Cells rapidly reorganize and form capillary-like structures when stimulated with serum. Transforming growth factor β1 (TGF-β1) alone can substitute for serum and induce cell survival and tubular network formation. This TGF-β1-mediated angiogenic activity depends on phosphatidylinositol 3-kinase (PI3K) and p42/p44 mitogen-activated protein kinase (MAPK) signaling. We showed that specific inhibitors of either pathway (wortmannin, LY-294002, and PD-98059) all suppressed TGF-β1-induced angiogenesis mainly by compromising cell survival. We established that TGF-β1 stimulated the expression of TGF-α mRNA and protein, the tyrosine phosphorylation of a 170-kDa membrane protein representing the epidermal growth factor (EGF) receptor, and the delayed activation of PI3K/Akt and p42/p44 MAPK. Moreover, we showed that all these TGF-β1-mediated signaling events, including tubular network formation, were suppressed by incubating TGF-β1-stimulated endothelial cells with a soluble form of an EGF receptor (ErbB-1) or tyrphostin AG1478, a specific blocker of EGF receptor tyrosine kinase. Finally, addition of TGF-α alone poorly stimulated angiogenesis; however, by reducing cell death, it strongly potentiated the action of TGF-β1. We therefore propose that TGF-β1 promotes angiogenesis at least in part via the autocrine secretion of TGF-α, a cell survival growth factor, activating PI3K/Akt and p42/p44 MAPK.


2016 ◽  
Vol 45 (4) ◽  
pp. 954-960 ◽  
Author(s):  
Matthias Kieb ◽  
Frank Sander ◽  
Cornelia Prinz ◽  
Stefanie Adam ◽  
Anett Mau-Möller ◽  
...  

Background: Platelet-rich plasma (PRP) is widely used in sports medicine. Available PRP preparations differ in white blood cell, platelet, and growth factor concentrations, making standardized research and clinical application challenging. Purpose: To characterize a newly standardized procedure for pooled PRP that provides defined growth factor concentrations. Study Design: Controlled laboratory study. Methods: A standardized growth factor preparation (lyophilized PRP powder) was prepared using 12 pooled platelet concentrates (PCs) derived from different donors via apheresis. Blood samples and commercially available PRP (SmartPrep-2) served as controls (n = 5). Baseline blood counts were analyzed. Additionally, single PCs (n = 5) were produced by standard platelet apheresis. The concentrations of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), platelet-derived growth factor AB (PDGF-AB), transforming growth factor β1 (TGF-β1), insulin-like growth factor 1 (IGF-1), interleukin (IL)–1α, IL-1β, and IL-1 receptor agonist (IL-1RA) were analyzed by enzyme-linked immunosorbent assay, and statistical analyses were performed using descriptive statistics, mean differences, 95% CIs, and P values (analysis of variance). Results: All growth factor preparation methods showed elevated concentrations of the growth factors VEGF, bFGF, PDGF-AB, and TGF-β1 compared with those of whole blood. Large interindividual differences were found in VEGF and bFGF concentrations. Respective values (mean ± SD in pg/mL) for whole blood, SmartPrep-2, PC, and PRP powder were as follows: VEGF (574 ± 147, 528 ± 233, 1087 ± 535, and 1722), bFGF (198 ± 164, 410 ± 259, 151 ± 99, and 542), PDGF-AB (2394 ± 451, 17,846 ± 3087, 18,461 ± 4455, and 23,023), and TGF-β1 (14,356 ± 4527, 77,533 ± 13,918, 68,582 ± 7388, and 87,495). IGF-1 was found in SmartPrep-2 (1539 ± 348 pg/mL). For PC (2266 ± 485 pg/mL), IGF-1 was measured at the same levels of whole blood (2317 ± 711 pg/mL) but was not detectable in PRP powder. IL-1α was detectable in whole blood (111 ± 35 pg/mL) and SmartPrep-2 (119 ± 44 pg/mL). Conclusion: Problems with PRP such as absent standardization, lack of consistency among studies, and black box dosage could be solved by using characterized PRP powder made by pooling and lyophilizing multiple PCs. The new PRP powder opens up new possibilities for PRP research as well as for the treatment of patients. Clinical Relevance: The preparation of pooled PRP by means of lyophilization may allow physicians to apply a defined amount of growth factors by using a defined amount of PRP powder. Moreover, PRP powder as a dry substance with no need for centrifugation could become ubiquitously available, thus saving time and staff resources in clinical practice. However, before transferring the results of this basic science study to clinical application, regulatory issues have to be cleared.


Molecules ◽  
2019 ◽  
Vol 24 (15) ◽  
pp. 2729 ◽  
Author(s):  
Melo ◽  
Luzo ◽  
Lana ◽  
Santana

Leukocyte and platelet-rich plasma (L-PRP) is an autologous product that when activated forms fibrin nanofibers, which are useful in regenerative medicine. As an important part of the preparation of L-PRP, the centrifugation parameters may affect the release of soluble factors that modulate the behavior of the cells in the nanofibers. In this study, we evaluated the influences of four different centrifugation conditions on the concentration of platelets and leukocytes in L-PRP and on the anabolic/catabolic balance of the nanofiber microenvironment. Human adipose-derived mesenchymal stem cells (h-AdMSCs) were seeded in the nanofibers, and their viability and growth were evaluated. L-PRPs prepared at 100× g and 100 + 400× g released higher levels of transforming growth factor (TGF)-β1 and platelet-derived growth factor (PDGF)-BB due to the increased platelet concentration, while inflammatory cytokines interleukin (IL)-8 and tumor necrosis factor (TNF)-α were more significantly released from L-PRPs prepared via two centrifugation steps (100 + 400× g and 800 + 400× g) due to the increased concentration of leukocytes. Our results showed that with the exception of nanofibers formed from L-PRP prepared at 800 + 400× g, all other microenvironments were favorable for h-AdMSC proliferation. Here, we present a reproducible protocol for the standardization of L-PRP and fibrin nanofibers useful in clinical practices with known platelet/leukocyte ratios and in vitro evaluations that may predict in vivo results.


EP Europace ◽  
2020 ◽  
Vol 22 (10) ◽  
pp. 1590-1599
Author(s):  
Maximilian Funken ◽  
Tobias Bruegmann ◽  
Philipp Sasse

Abstract Aims Besides providing mechanical stability, fibroblasts in the heart could modulate the electrical properties of cardiomyocytes. Here, we aim to develop a three-dimensional hetero-cellular model to analyse the electric interaction between fibroblasts and human cardiomyocytes in vitro using selective optogenetic de- or hyperpolarization of fibroblasts. Methods and results NIH3T3 cell lines expressing the light-sensitive ion channel Channelrhodopsin2 or the light-induced proton pump Archaerhodopsin were generated for optogenetic depolarization or hyperpolarization, respectively, and characterized by patch clamp. Cardiac bodies consisting of 50% fibroblasts and 50% human pluripotent stem cell-derived cardiomyocytes were analysed by video microscopy and membrane potential was measured with sharp electrodes. Myofibroblast activation in cardiac bodies was enhanced by transforming growth factor-β1 (TGF-β1)-stimulation. Connexin-43 expression was analysed by qPCR and fluorescence recovery after photobleaching. Illumination of Channelrhodopsin2 or Archaerhodopsin expressing fibroblasts induced inward currents and depolarization or outward currents and hyperpolarization. Transforming growth factor-β1-stimulation elevated connexin-43 expression and increased cell–cell coupling between fibroblasts as well as increased basal beating frequency and cardiomyocyte resting membrane potential in cardiac bodies. Illumination of cardiac bodies generated with Channelrhodopsin2 fibroblasts accelerated spontaneous beating, especially after TGF-β1-stimulation. Illumination of cardiac bodies prepared with Archaerhodopsin expressing fibroblasts led to hyperpolarization of cardiomyocytes and complete block of spontaneous beating after TGF-β1-stimulation. Effects of light were significantly smaller without TGF-β1-stimulation. Conclusion Transforming growth factor-β1-stimulation leads to increased hetero-cellular coupling and optogenetic hyperpolarization of fibroblasts reduces TGF-β1 induced effects on cardiomyocyte spontaneous activity. Optogenetic membrane potential manipulation selectively in fibroblasts in a new hetero-cellular cardiac body model allows direct quantification of fibroblast–cardiomyocyte coupling in vitro.


2016 ◽  
Vol 22 (1) ◽  
pp. 40-50 ◽  
Author(s):  
Corina-Adriana Ghebes ◽  
Jéré van Lente ◽  
Janine Nicole Post ◽  
Daniel B. F. Saris ◽  
Hugo Fernandes

Modulating the bone morphogenetic protein 2 (BMP-2) and transforming growth factor–β1 (TGF-β1) signaling pathways is essential during tendon/ligament (T/L) healing. Unfortunately, growth factor delivery in situ is far from trivial and, in many cases, the necessary growth factors are not approved for clinical use. Here we used a BMP-2 and a TGF-β1 reporter cell line to screen a library of 1280 Food and Drug Administration–approved small molecules and identify modulators of both signaling pathways. We identified four compounds capable of modulating BMP and TGF signaling on primary human tendon–derived cells (huTCs) and describe their effects on proliferation and differentiation of these cells.


Sign in / Sign up

Export Citation Format

Share Document