Development Of High-Strength Aluminum-Based Alloys By Synthesis Of New Multicomponent Quasicrystals

1998 ◽  
Vol 553 ◽  
Author(s):  
A. Inoue ◽  
H. M. Kimura

AbstractBy the control of composition, clustered atomic configuration and stability of the supercooled liquid in the rapid solidification and powder metallurgy processes, high-strength Al-based bulk alloys containing nanoscale nonperiodic phases were produced in AI-Ln-LTM, AI-ETM-LTM and Al-(V, Cr, Mn)-LTM (Ln=lanthanide metal, LTM=VII and VIII group metals, ETM=IV to VI group metals) alloys containing high Al contents of 92 to 95 at%. The nonperiodic phases are composed of amorphous or icosahedral (I) phase. In particular, the Al-based bulk alloys consisting of nanoscale I particles surrounded by Al phase exhibit much better mechanical properties as compared with commercial Al base alloys. The success of producing the Al-based alloys with good engineering properties by use of I phase is important for future development of I-based alloys as practical materials.

2016 ◽  
Vol 879 ◽  
pp. 145-150
Author(s):  
Kei Ameyama ◽  
Sanjay Kumar Vajpai ◽  
Mie Ota

This paper presents the novel microstructure design, called Harmonic Structure, which gives structural metallic materials outstanding mechanical properties through an innovative powder metallurgy process. Homogeneous and ultra-fine grain (UFG) structure enables the materials high strength. However, such a “Homo-“ and “UFG” microstructure does not, usually, satisfy the need to be both strong and ductile, due to the plastic instability in the early stage of the deformation. As opposed to such a “Homo-and UFG“ microstructure, “Harmonic Structure” has a heterogeneous microstructure consisting of bimodal grain size together with a controlled and specific topological distribution of fine and coarse grains. In other words, the harmonic structure is heterogeneous on micro-but homogeneous on macro-scales. In the present work, the harmonic structure design has been applied to pure metals and alloys via a powder metallurgy route consisting of controlled severe plastic deformation of the corresponding powders by mechanical milling or high pressure gas milling, and subsequent consolidation by SPS. At a macro-scale, the harmonic structure materials exhibited superior combination of strength and ductility as compared to their homogeneous microstructure counterparts. This behavior was essentially related to the ability of the harmonic structure to promote the uniform distribution of strain during plastic deformation, leading to improved mechanical properties by avoiding or delaying localized plastic instability.


2019 ◽  
Vol 16 (2) ◽  
pp. 183-188
Author(s):  
Shailendra Joshi

Stainless steel has an excellent mechanical property as well as high corrosion resistance. Stainless steel foams, therefore, seemed like an attractive material for impact energy absorption applications where damping capability is required such as in vehicles and buildings. Also when stainless steel foam is produced as stainless steel foam, the material density will be reduced thus the resulting foam will be a combination of light weight and high strength that can also be used in high strength applications. In our analysis, we tried to produce stainless steel foam through powder metallurgy in order to control mechanical properties in a better manner compared to the casting method. Also, we try to compare the pore morphology in foams on changing the space holder from accicular urea to crushed urea using FE-SEM. The properties of stainless steel foam, to a large extent, are found to depend on the arrangement of the pores which is decided by the space holder utilized during its synthesis using powder metallurgy route. The stainless steel obtained using acicular carbamide as space holder is found to possess acicular or irregular pores whereas those produced with crushed urea as space holder possesses nearly circular holes. Also, the previous foams are found to have better mechanical properties contributing towards more useful metallic foam.


2013 ◽  
Vol 351-352 ◽  
pp. 26-29 ◽  
Author(s):  
Jun Guo ◽  
Jing Tang ◽  
Yu Wen ◽  
Jia Liang Zhang ◽  
Yu Shun Li

With the characteristics of fast growth and short renewable cycle, as well as the superiority in mechanical properties such as high strength and high stiffness, the application bamboo essence in construction industry will promote the green sustainable development of this industry. This paper introduces the structure and mechanical properties of bamboo briefly, with the composition, modeling features and special of composite bamboo buildings described and analyzed, and the current study examples presented, which provides ideas and references for future development of the modern bamboo structure buildings.


2010 ◽  
Vol 146-147 ◽  
pp. 734-737
Author(s):  
Hui Yu ◽  
Hua Shun Yu ◽  
Zhen Ya Zhang ◽  
Guang Hui Min ◽  
Cheng Chen

In this study, AZ91 and SiC particulates reinforced AZ91 (SiCp/AZ91) magnesium alloys were successfully fabricated using rapid solidification/powder metallurgy technique followed by hot extrusion. Microstructural evolution and mechanical properties of the monolithic AZ91 and SiCp/AZ91 magnesium alloys were evaluated. SiC particulates were well distributed with only few agglomerated particles. The porosity level and microhardness increased as SiCp content increased because the increased surface area of SiCp, harder ceramic phases and SiCp acted obstacles to the motion of dislocations. In addition, an increase in particulate reinforcement content was observed to decrease mechanical properties of the composite compared with the unreinforced counterpart due to increasing agglomerating regions and porosity, brittle interface debonding between matrix and SiCp.


2013 ◽  
Vol 811 ◽  
pp. 87-92 ◽  
Author(s):  
Jan Kazior ◽  
Aneta Szewczyk-Nykiel ◽  
Tadeusz Pieczonka ◽  
Marek Hebda ◽  
Marek Nykiel

Alloys from austenitic and ferritic stainless steel found to be satisfactory for a great many applications. However, for applications that require higher levels of strength and hardness from the martensitic grades are frequently specified. Martensitic stainless steels offer significantly higher strengths but have to low ductility. For this reason for application where high levels of strength and a moderate ductility is required, the precipitation strengthened stainless steels are often considered. One of the most popular alloy of this kind of stainless steel is 17-4 PH. The aim of the present paper was to examined the influence the process parameters in conventional powder metallurgy processing on the mechanical properties of the 17-4 PH alloy in both as-sintered and heat treated conditions. In was found that temperature of aged is a very sensitive parameter for obtained high strength and acceptable ductility.


2015 ◽  
Vol 813-814 ◽  
pp. 603-607
Author(s):  
T. Pravin ◽  
M. Sadhasivam ◽  
S. Raghuraman

Powder Metallurgy (P/M) is a manufacturing process in which powders are compacted in a die to attain the final product. P/M has certain unique advantage like controlled porosity, High Strength to weight ratio. Aluminium (Al) is a light weight material, but pure Al does not possess a good strength. To achieve the strength, Copper (Cu) powders are blended at required proportions. Al along with Cu shows good mechanical properties. An attempt is made to optimize the process parameter of Al – 10% Cu powder to attain maximum process efficiency. Here optimization is done by Taghuchi’s method.


2006 ◽  
Vol 14 (3) ◽  
pp. 255-259 ◽  
Author(s):  
Larissa V. Louzguina-Luzgina ◽  
Dmitri V. Louzguine-Luzgin ◽  
Akihisa Inoue

Sign in / Sign up

Export Citation Format

Share Document