Properties of Precipitation Hardening 17-4 PH Stainless Steel Manufactured by Powder Metallurgy Technology

2013 ◽  
Vol 811 ◽  
pp. 87-92 ◽  
Author(s):  
Jan Kazior ◽  
Aneta Szewczyk-Nykiel ◽  
Tadeusz Pieczonka ◽  
Marek Hebda ◽  
Marek Nykiel

Alloys from austenitic and ferritic stainless steel found to be satisfactory for a great many applications. However, for applications that require higher levels of strength and hardness from the martensitic grades are frequently specified. Martensitic stainless steels offer significantly higher strengths but have to low ductility. For this reason for application where high levels of strength and a moderate ductility is required, the precipitation strengthened stainless steels are often considered. One of the most popular alloy of this kind of stainless steel is 17-4 PH. The aim of the present paper was to examined the influence the process parameters in conventional powder metallurgy processing on the mechanical properties of the 17-4 PH alloy in both as-sintered and heat treated conditions. In was found that temperature of aged is a very sensitive parameter for obtained high strength and acceptable ductility.

Alloy Digest ◽  
2009 ◽  
Vol 58 (5) ◽  

Abstract Crucible 174 SXR is a premium-quality precipitation-hardening stainless steel designed for use as rifle barrels. It is a modification of Crucible’s 17Cr-4Ni that offers substantially improved machinability without sacrificing toughness. Its excellent corrosion resistance approaches that of a 300 series austenitic stainless steel, while its high strength is characteristic of 400 series martensitic stainless steels. At similar hardness levels, Crucible 174 SXR offers greater toughness than either the 410 or 416 stainless steels which are commonly used for rifle barrels. This datasheet provides information on composition, physical properties, hardness, and elasticity as well as fracture toughness. It also includes information on forming and heat treating. Filing Code: SS-1034. Producer or source: Crucible Service Centers.


2013 ◽  
Vol 794 ◽  
pp. 289-304 ◽  
Author(s):  
G. Madhusudhan Reddy ◽  
Adula Rajasekhar

Many critical applications in chemical equipment, aircraft and ordinance demand a material of construction with high strength and good corrosion resistance. Frequently the strength requirement exceeds that obtainable with austenitic or ferritic stainless steel and it is necessary to use one of the martensitic stainless steels. Since martensitic stainless steels are structural materials, weldability has been an important consideration in their development. AISI 431 is one of the most potentially attractive steels in this class used extensively for parts requiring a combination of high tensile strength, good toughness and corrosion resistance. Although this material has been used for many years, little information is available on the welding behavior of these steels. Further, data on electron beam (EB) welding and solid state welding process like friction welding are scarce. The lack of knowledge constitutes a potential drawback to the more widespread use of these steels. Hence, a study has been taken up to develop an understanding on the electron beam welding and friction welding aspects of martensitic stainless steel type AISI 431. Various kinds of post weld heat treatments (PWHT) were investigated to determine their influence on microstructure and mechanical properties. Weld center in EB welding resulted a cast structure consists of dendritic structure with ferrite network in a matrix of un-tempered martensite. In friction welding, the weld center exhibited thermo-mechanical effected structure consists of fine intragranular acicular martensite in equiaxed prior austenite grains. In both the welding processes, post weld tempering treatment resulted in coarsening of the martensite which increases with increase in tempering temperature. In the as-weld condition, welds exhibited high strength and hardness and poor impact toughness. Increase in impact toughness and decrease in strength and hardness is observed with an increase in tempering temperature. The hardness of EB welds increased with increase in the austenitizing temperature up to 1100 °C and a marginal decrease thereafter was observed. Double austenitization after double tempering resulted in optical mechanical properties i.e., strength, hardness and toughness.


Alloy Digest ◽  
1981 ◽  
Vol 30 (7) ◽  

Abstract AISI No. 633 is a chromium-nickel-molybdenum stainless steel whose properties can be changed by heat treatment. It bridges the gap between the austenitic and martensitic stainless steels; that is, it has some of the properties of each. Its uses include high-strength structural applications, corrosion-resistant springs and knife blades. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-389. Producer or source: Stainless steel mills.


2020 ◽  
Vol 405 ◽  
pp. 133-138
Author(s):  
Ludmila Kučerová ◽  
Andrea Jandová ◽  
Ivana Zetková

Maraging steel is an iron-nickel steel alloy, which achieves very good material properties like high toughness, hardness, good weldability, high strength and dimensional stability during heat treatment. In this work, maraging steel 18Ni-300 was manufactured by selective laser melting. It is a method of additive manufacturing (AM) technology, which produces prototypes and functional parts. Sample of additively manufactured and conventional steel with the same chemical composition were tested after in three different states – heat treated (as-built/as-received), solution annealed and precipitation hardened. Resulting microstructures were analysed by light and scanning electron microscopy and mechanical properties were obtained by hardness measurement and tensile test. Cellular martensitic microstructures were observed in additively manufactured samples and conventional maraging steel consisted of lath martensitic microstructures. Very similar mechanical properties were obtained for both steels after the application of the same heat treatment. Ultimate tensile strengths reached 839 – 900 MPa for samples without heat treatment and heat treated by solution annealing, the samples after precipitation hardening had tensile strengths of 1577 – 1711 MPa.


2019 ◽  
Vol 16 (2) ◽  
pp. 183-188
Author(s):  
Shailendra Joshi

Stainless steel has an excellent mechanical property as well as high corrosion resistance. Stainless steel foams, therefore, seemed like an attractive material for impact energy absorption applications where damping capability is required such as in vehicles and buildings. Also when stainless steel foam is produced as stainless steel foam, the material density will be reduced thus the resulting foam will be a combination of light weight and high strength that can also be used in high strength applications. In our analysis, we tried to produce stainless steel foam through powder metallurgy in order to control mechanical properties in a better manner compared to the casting method. Also, we try to compare the pore morphology in foams on changing the space holder from accicular urea to crushed urea using FE-SEM. The properties of stainless steel foam, to a large extent, are found to depend on the arrangement of the pores which is decided by the space holder utilized during its synthesis using powder metallurgy route. The stainless steel obtained using acicular carbamide as space holder is found to possess acicular or irregular pores whereas those produced with crushed urea as space holder possesses nearly circular holes. Also, the previous foams are found to have better mechanical properties contributing towards more useful metallic foam.


Alloy Digest ◽  
2020 ◽  
Vol 69 (3) ◽  

Abstract Sandmeyer Alloy 410 (UNS S41000) is a general purpose 12% chromium martensitic stainless steel that can be heat treated to obtain a wide range of mechanical properties. This alloy possesses good corrosion resistance along with high strength and hardness. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, machining, and joining. Filing Code: SS-1316. Producer or source: Sandmeyer Steel Company.


Metals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 255 ◽  
Author(s):  
Le Zai ◽  
Chaoqun Zhang ◽  
Yiqiang Wang ◽  
Wei Guo ◽  
Daniel Wellmann ◽  
...  

Martensitic stainless steels are widely used in industries due to their high strength and good corrosion resistance performance. Precipitation-hardened (PH) martensitic stainless steels feature very high strength compared with other stainless steels, around 3-4 times the strength of austenitic stainless steels such as 304 and 316. However, the poor workability due to the high strength and hardness induced by precipitation hardening limits the extensive utilization of PH stainless steels as structural components of complex shapes. Laser powder bed fusion (L-PBF) is an attractive additive manufacturing technology, which not only exhibits the advantages of producing complex and precise parts with a short lead time, but also avoids or reduces the subsequent machining process. In this review, the microstructures of martensitic stainless steels in the as-built state, as well as the effects of process parameters, building atmosphere, and heat treatments on the microstructures, are reviewed. Then, the characteristics of defects in the as-built state and the causes are specifically analyzed. Afterward, the effect of process parameters and heat treatment conditions on mechanical properties are summarized and reviewed. Finally, the remaining issues and suggestions on future research on L-PBF of martensitic precipitation-hardened stainless steels are put forward.


Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1704 ◽  
Author(s):  
Gang Luo ◽  
Huaying Li ◽  
Yugui Li ◽  
Jinqiang Mo

Low chromium ferritic stainless steel has great potential in automobile structures for improved strength. In this study, quenching and partitioning (Q-P) treatment was applied to a low-carbon-chromium ferritic stainless steel and compared with traditional heat treatment (quenching-tempering [Q-T] and annealing) in terms of microstructure, mechanical properties, corrosion resistance, and deformation of plate. The results show that the quenching and partitioning (Q-P) treatment has a series of advantages over conventional heat treatments (quenching-tempering and annealing). In terms of mechanical properties, it achieves a good match between strength and plasticity by combining the advantages of “soft state” with high elongation resulting from conventional annealing and high strength "hard state” through the traditional quenching-tempering process. The material possesses better crash safety; for the quenching-partitioning (Q-P) process, quenching-tempering process, and annealing process, the production of strength plasticity is about 16 GPa%, 15 GPa%, and 14 GPa%, respectively. The material has low yield strength, high work hardening index (compared with Q-T), a smooth tensile curve, and no yield plateau (compared with annealing), so it has better forming performance and processing surface, and the corrosion resistance has also improved. The pitting potential of the samples produced by the quenching treatment of Q-P and Q-T increased by about 0.2 V, which is about 20% higher than the one by the traditional annealing process.


2015 ◽  
Vol 813-814 ◽  
pp. 603-607
Author(s):  
T. Pravin ◽  
M. Sadhasivam ◽  
S. Raghuraman

Powder Metallurgy (P/M) is a manufacturing process in which powders are compacted in a die to attain the final product. P/M has certain unique advantage like controlled porosity, High Strength to weight ratio. Aluminium (Al) is a light weight material, but pure Al does not possess a good strength. To achieve the strength, Copper (Cu) powders are blended at required proportions. Al along with Cu shows good mechanical properties. An attempt is made to optimize the process parameter of Al – 10% Cu powder to attain maximum process efficiency. Here optimization is done by Taghuchi’s method.


2011 ◽  
Vol 413 ◽  
pp. 341-346 ◽  
Author(s):  
Quan Ming Song ◽  
David Wert

Carpenter Technology Corporation’s Custom 465® stainless steel is a state-of-the-art alloy which has seen its applications expanding at a rapid rate. This alloy is a premium double vacuum melted (VIM/VAR) martensitic precipitation hardening stainless steel that offers an excellent combination of strength, toughness, and corrosion resistance. With its exceptional properties, design engineers have specified the alloy for high-performance components in various industries, such as aerospace, industrial, energy, consumer and medical. The high strength, greater than 250 ksi (1722 MPa) typical, and toughness of the alloy have allowed Custom 465 stainless to be used as a high-strength upgrade to conventional PH stainless steels such as 13-8 and 17-4. The addition of corrosion resistance to the high strength and toughness properties has allowed the alloy to be used as a stainless alternative to non-stainless steels such as AISI 4340 and 300M. This paper will compare mechanical and corrosion resistance properties of Custom 465 stainless steel to those of other PH stainless steels such as 17-4, 15-5, and 13-8, as well as to those of other aerospace alloys such as 300M and AerMet® 100 alloy. In addition, examples of the varied uses of the alloy will be provided, these examples will highlight the benefits obtained by the use of Custom 465 stainless steel over the previous alloys of choice for the applications.


Sign in / Sign up

Export Citation Format

Share Document