Microcrystalline Silicon Tunnel Junctions for Amorphous Silicon-Based Multijunction Solar Cells

1999 ◽  
Vol 557 ◽  
Author(s):  
A. S. Ferlauto ◽  
Joohyun Koh ◽  
P. I. Rovira ◽  
C. R. Wronski ◽  
R. W. Collins

AbstractThe formation of tunnel junctions for applications in amorphous silicon (a-Si:H) based multijunction n-i-p solar cells has been studied using real time optics. The junction structure investigated in detail here consists of a thin (~200 Å) layer of n-type microcrystalline silicon (μc-Si:H) on top of an equally thin layer of p-type μc-Si:H, the latter deposited on thick (~2000 Å) intrinsic a-Si:H. Such a structure has been optimized in an attempt to obtain single-phase μc-Si:H with a high crystallite packing density and large grain size for both layers of the tunnel junction. We have explored the conditions under which grain growth is continuous across the p/n junction and conditions under which renucleation of n-layer grains can be ensured at the junction. One important finding of this study is that the optimum conditions for single-phase, high-density μc-Si:H n-layers are different depending on whether the substrate is a μc-Si:H p-layer or is a H2-plasma treated or untreated a-Si:H i-layer. Thus, the top-most μc-Si:H layer of the tunnel junction must be optimized in the multijunction device configuration, rather than in single cell configurations on a-Si:H i-layers. Our observations are explained using an evolutionary phase diagram for a-Si:H and μc-Si:H film growth versus thickness and H2-dilution ratio, in which the boundary between the two phases is strongly substrate-dependent.

2010 ◽  
Vol 24 (28) ◽  
pp. 5527-5538 ◽  
Author(s):  
Q. S. LEI ◽  
H. X. XU ◽  
J. P. XU

In this paper, we reported highly conductive p-type microcrystalline silicon (μc- Si:H ) films deposited on amorphous silicon (a- Si:H ) surface by very high frequency plasma enhanced chemical vapor deposition (VHF PECVD) technique. Hydrogen plasma treatment of amorphous silicon surface and nucleation layers were introduced prior to μc- Si:H films deposition. The film properties were investigated by using Raman spectra, scanning electron microscope (SEM), optical transmission and reflection, as well as dark conductivity measurements. The influence of plasma treatment and nucleation layer on the growth and properties of the thin p-type μc- Si:H films was studied. It is demonstrated that the hydrogen plasma treatment of a- Si:H films gives rise to the deposition of μc- Si:H on the a- Si:H surface. Also, the growth and properties of the μc- Si:H films are strongly dependent on the nucleation layer. The dark conductivity (σd) and crystalline fraction increase with the plasma treatment time and attain high values at about 600 s. A p-type μc- Si:H film with conductivity of 0.0875 Scm-1 at a thickness of 30 nm was obtained. The film was introduced as window layers for flexible solar cells. An efficiency of about 7.15% was obtained.


2006 ◽  
Vol 910 ◽  
Author(s):  
Qi Wang ◽  
Matt P. Page ◽  
Eugene Iwancizko ◽  
Yueqin Xu ◽  
Yanfa Yan ◽  
...  

AbstractWe have achieved an independently-confirmed 17.8% conversion efficiency in a 1-cm2, p-type, float-zone silicon (FZ-Si) based heterojunction solar cell. Both the front emitter and back contact are hydrogenated amorphous silicon (a-Si:H) deposited by hot-wire chemical vapor deposition (HWCVD). This is the highest reported efficiency for a HWCVD silicon heterojunction (SHJ) solar cell. Two main improvements lead to our most recent increases in efficiency: 1) the use of textured Si wafers, and 2) the application of a-Si:H heterojunctions on both sides of the cell. Despite the use of textured c-Si to increase the short-circuit current, we were able to maintain the same 0.65 V open-circuit voltage as on flat c-Si. This is achieved by coating a-Si:H conformally on the c-Si surfaces, including covering the tips of the anisotropically-etched pyramids. A brief atomic H treatment before emitter deposition is not necessary on the textured wafers, though it was helpful in the flat wafers. It is essential to high efficiency SHJ solar cells that the emitter grows abruptly as amorphous silicon, instead of as microcrystalline or epitaxial Si. The contact on each side of the cell comprises a thin (< 5 nm) low substrate temperature (~100°C) intrinsic a-Si:H layer, followed by a doped layer. Our intrinsic layers are deposited at 0.3-1.2 nm/s. The doped emitter and back-contact layers were deposited at a higher temperature (>200°C) and grown from PH3/SiH4/H2 and B2H6/SiH4/H2 doping gas mixtures, respectively. This combination of low (intrinsic) and high (doped layer) growth temperatures was optimized by lifetime and surface recombination velocity measurements. Our rapid efficiency advance suggests that HWCVD may have advantages over plasma-enhanced (PE) CVD in fabrication of high-efficiency heterojunction c-Si cells; there is no need for process optimization to avoid plasma damage to the delicate, high-quality, Si wafers.


2015 ◽  
Vol 1770 ◽  
pp. 7-12 ◽  
Author(s):  
Henriette A. Gatz ◽  
Yinghuan Kuang ◽  
Marcel A. Verheijen ◽  
Jatin K. Rath ◽  
Wilhelmus M.M. (Erwin) Kessels ◽  
...  

ABSTRACTSilicon heterojunction solar cells (SHJ) with thin intrinsic layers are well known for their high efficiencies. A promising way to further enhance their excellent characteristics is to enable more light to enter the crystalline silicon (c-Si) absorber of the cell while maintaining a simple cell configuration. Our approach is to replace the amorphous silicon (a-Si:H) emitter layer with a more transparent nanocrystalline silicon oxide (nc-SiOx:H) layer. In this work, we focus on optimizing the p-type nc-SiOx:H material properties, grown by radio frequency plasma enhanced chemical vapor deposition (rf PECVD), on an amorphous silicon layer.20 nm thick nanocrystalline layers were successfully grown on a 5 nm a-Si:H layer. The effect of different ratios of trimethylboron to silane gas flow rates on the material properties were investigated, yielding an optimized material with a conductivity in the lateral direction of 7.9×10-4 S/cm combined with a band gap of E04 = 2.33 eV. Despite its larger thickness as compared to a conventional window a-Si:H p-layer, the novel layer stack of a-Si:H(i)/nc-SiOx:H(p) shows significantly enhanced transmission compared to the stack with a conventional a-Si:H(p) emitter. Altogether, the chosen material exhibits promising characteristics for implementation in SHJ solar cells.


Sign in / Sign up

Export Citation Format

Share Document