Growth and Structure of Metallic Barrie Laye and Interconnect Films I: Exeriments

1999 ◽  
Vol 564 ◽  
Author(s):  
D. L. Windt ◽  
J. Dalla Torre ◽  
G. H. Gilmer ◽  
J. Sapjeta ◽  
R. Kalyanaraman ◽  
...  

AbstractWe present experimental results directed at understanding the growth and structure of metallic barrier layer and interconnect films. Numerical simulation results associated with this experimental work are presented in an accompanying paper in these proceedings. Here, thin films of Al, Ti, Cu and Ta have been grown by magnetron sputtering onto oxidized Si substrates. Using a specially-constructed substrate holder, the orientation of the substrate with respect to the growth direction was varied from horizontal to vertical. Films were grown at both low and high argon pressure; in the case of Ta, the cathode power was varied as well. The film structure and in particular the surface roughness was measured by X-ray reflectance and also by atomic force microscopy. We find that the surface roughness increases markedly with orientation angle in the case of Ta and Cu films, and in Ti films grown at high argon pressure. At low pressure, however, the Ti film surface roughness remains constant for all substrate orientations. No variation in roughness with either orientation angle or argon pressure was observed in the Al films. These results suggest that, under certain circumstances, shadowing effects and/or grain orientation (i.e., texture) competition during growth can give rise to lower density, more porous (and thus more rough) films, particularly at large orientation angles, as on sidewalls in sub-micron trenches.

1999 ◽  
Vol 562 ◽  
Author(s):  
D. L. Windt ◽  
J. Dalla Tortre ◽  
G. H. Gilmer ◽  
J. Sapjeta ◽  
R. Kalyanaraman ◽  
...  

ABSTRACTWe present experimental results directed at understanding the growth and structure of metallic barrier layer and interconnect films. Numerical simulation results associated with this experimental work are presented in an accompanying paper in these proceedings. Here, thin films of Al, Ti, Cu and Ta have been grown by magnetron sputtering onto oxidized Si substrates. Using a specially-constructed substrate holder, the orientation of the substrate with respect to the growth direction was varied from horizontal to vertical. Films were grown at both low and high argon pressure; in the case of Ta, the cathode power was varied as well. The film structure and in particular the surface roughness was measured by X-ray reflectance and also by atomic force microscopy. We find that the surface roughness increases markedly with orientation angle in the case of Ta and Cu films, and in Ti films grown at high argon pressure. At low pressure, however, the Ti film surface roughness remains constant for all substrate orientations. No variation in roughness with either orientation angle or argon pressure was observed in the Al films. These results suggest that, under certain circumstances, shadowing effects and/or grain orientation (i.e., texture) competition during growth can give rise to lower density, more porous (and thus more rough) films, particularly at large orientation angles, as on sidewalls in sub-micron trenches.


1995 ◽  
Vol 396 ◽  
Author(s):  
Seok-Keun Koh ◽  
Young-Soo Yoon ◽  
Ki-Hwan Kim ◽  
Hong-Gui Jang ◽  
Hyung-Jin Jung

AbstractPartially ionized beam deposition of Cu thin films on glass at room temperature were carried out to fabricate Cu laser mirrors with good structural and reflectance properties. At a constant film thickness of 600 Å, the grain size of as-grown Cu films increased with acceleration voltage, and there was no indication of defects such as cracks and/or large pores in the film surface as shown in scanning electron microscopy images. Root-mean-square(Rms) surface roughnesses of the films with thicknesses of 600 Å were measured by atomic force microscopy. RmS surface roughness increased when acceleration voltage increased from 0 kV to 2 kV, but decreased at the acceleration voltage of 3 kV. RmS surface roughness of the film grown at 4 kV, however, increased again. At the acceleration voltage of 3 kV, reflectance of the films increased with the film thickness until 600 Å and decreased at the film thickness of 800 Å. The reflectance results showed that the Cu film deposited at 3 kV had higher reflectance than that of others. Our results suggest that it is possible to grow the Cu film with good structural and optical properties on glass substrate at room temperature by partially ionized beam deposition.


1992 ◽  
Vol 280 ◽  
Author(s):  
H. Rojhantalab ◽  
M. Moinpour ◽  
N. Peter ◽  
M.L.A. Dass ◽  
W. Hough ◽  
...  

ABSTRACTChemically vapor deposited borophosphosilicate glass (BPSG) has been widely used in microelectronic device fabrication as interlayer dielectric film due to its excellent planarization, gettering and flow properties. With device geometry reducing to sub micron levels, there is an increasingly greater emphasis on detection and elimination of sub micron defects particularly on deposited film. In this paper, we report on the evaluation and characterization of the surface roughness of BPSG films of various thicknesses and film compositions deposited on Si substrates using the Atomic Force Microscopy (AFM). The effects of high temperature densification process on the surface roughness are presented. The defect detection capabilities of conventional laser-based particle counters with respect to the surface roughness of BPSG films are investigated.


Author(s):  
M. DiBattista ◽  
S. V. Patel ◽  
J. F. Mansfield ◽  
J. L. Gland ◽  
J. W. Schwank

Thin film electronic devices that employ resistance change responses of Pt / Ti films to detect gas species have been microfabricated at the University of Michigan. Atomic force microscopy (AFM) is used to investigate morphology of the Pt / Ti sensing films deposited on the microfabricated device. These Pt / Ti sensing films are strongly influenced by many factors, making it difficult to determine the exact relationship between film structure, chemical sensitivity, and selectivity. In-situ AFM investigations of Pt / Ti films on this device at elevated temperatures provides the opportunity for real time observation of film morphology changes under controlled conditions, testing sensing film stability during device operation, and correlating film structure to resistance.Observation of the Pt / Ti film surface and in-situ resistance measurements at elevated temperatures are possible due to the construction of the sensing device. The sensors are based on chemically active thin films deposited on a micromachined silicon window, supported by a 300 μn thick silicon rim.


1994 ◽  
Vol 361 ◽  
Author(s):  
Scott R. Summerfelt ◽  
Dave Kotecki ◽  
Angus Kingon ◽  
H.N. Al-Shareef

ABSTRACTThe formation of Pt hillocks during high temperature processing is a problem when using Pt as a bottom electrode for high dielectric constant materials. The hillock height is frequently larger than the dielectric thickness, degrading the leakage current of the device. In this work, Pt was deposited by electron beam evaporation on in-situ formed 40 nm ZrO2 coated SiO2 / Si substrates. The samples were then annealed at temperatures between 400°C and 700°C for times ranging from 2 min to 40 min. The surface roughness was measured by atomic force microscopy (AFM). The surface was characterized using Ra, RMS and Zmax over 5 μm × 5μm regions. Zmax is sensitive to hillock formation and Ra is sensitive to changes in general surface roughness. Analysis of Zmax indicates that 100 nm Pt / ZrO2 deposited at 315°C forms hillocks above 450°C during initial heatup. Subsequently, the hillocks decay for temperatures of 600°C and above such that they are almost gone after a 30 min air anneal. In-situ wafer stress measurements of Pt / ZrO2 were performed in O2 at temperatures up to 650°C. The Pt relaxes above 500°C in O2.


1999 ◽  
Vol 14 (10) ◽  
pp. 4087-4092 ◽  
Author(s):  
C. Kylner ◽  
L. Mattsson

The effect of adding a few percent (3 at.%) Cu to Al films on the initial hillock formation and the changes in overall film stress were studied. Al films were evaporated by an electron-beam gun onto Si wafers in an ultrahigh vacuum deposition system and Al–Cu films were coevaporated with a thermally heated source used for the Cu. The as-deposited samples were radiatively heated at 3 °C/s in an air environment. During heating, the initial hillocking and the changes in overall stress were measured simultaneously and in real time with a specially designed optical instrument. The measurement principle of this instrument is based on laser beam deflection, caused by wafer bending due to film stress, and collection of the laser light scattered off from the hillocks appearing on the film surface. The experimental results show that Cu alloying has a strengthening effect on Al films, resulting in delayed and considerably reduced hillock formation. Before heating, the as-deposited Al–Cu samples were investigated by total integrated scattering and atomic force microscopy. These investigations showed that Al–Cu films are considerably smoother and have smaller grains than Al films of similar thickness (340 nm). It was found that the small grains of Al–Cu films contribute to increasing the tensile stress–temperature slope. In addition, Al–Cu films can withstand higher compressive stresses than Al films.


Author(s):  
N. David Theodore ◽  
Renu Sharma ◽  
Juan Carrejo

Since the invention of AFM (atomic force microscopy) applications of the technique have grown from year to year. It is expected that with time, there will be an increased use of AFM in the semiconductor industry for analysis of surface-topography and microstructure of thin films and heterostructures. However, before the technique can be used on its own for analyzing the behavior of thin films, it is necessary to establish legitimate areas of application of the technique. The present study uses AFM and TEM (transmission electron-microscopy) to study a few examples of thin-film metallizations and then looks at the extent of correlation between the two. It turns out that TEM and AFM work very well as complementary techniques. Caution is required in interpreting AFM micrographs.As examples of metallization Al(Cu), polysilicon and TiW thin films were investigated using AFM and TEM. Al(1.5%Cu) films were sputtered onto SiO2/Si substrates for ∼1 second (unbiased) at a substrate temperature of 450°C.


1998 ◽  
Vol 533 ◽  
Author(s):  
Kelly E. Junge ◽  
Ruidiger Lange ◽  
Jennifer M. Dolan ◽  
Stefan Zollner ◽  
Josef Humlfcek ◽  
...  

AbstractWe measured the pseudodielectric function (PDF) of Ge1-yCy and Ge-rich Si1-x-yGexCy alloys from 1.1 to 5.2 eV using spectroscopic ellipsometry. These alloys were grown by molecular beam epitaxy at 6000C on (001) Si substrates. Analytical lineshapes fitted to numerically calculated derivatives of their PDFs determined the critical-point parameters of the E1, E1+Δ1, E0', and E2 transitions. The critical-point energies of the Ge1-yCy alloys were found to be similar to bulk Ge. This indicates that the presence of C in these alloys only has a small influence on the band structure. For some samples, the amplitude of the PDF is much lower than in bulk Ge, which can be attributed to surface roughness and explained within the framework of the Kirchhoff theory of diffraction or using effective medium theory. The degree of surface roughness indicated by optical measurements was confirmed by atomic force microscopy. We also studied bulk Czochralski-grown Si1-xGex alloys (0<x<0.28) doped with boron. Due to doping, the critical points shift to lower energies as reported previously for bulk Si and Ge.


Author(s):  
H. Kinney ◽  
M.L. Occelli ◽  
S.A.C. Gould

For this study we have used a contact mode atomic force microscope (AFM) to study to topography of fluidized cracking catalysts (FCC), before and after contamination with 5% vanadium. We selected the AFM because of its ability to well characterize the surface roughness of materials down to the atomic level. It is believed that the cracking in the FCCs occurs mainly on the catalysts top 10-15 μm suggesting that the surface corrugation could play a key role in the FCCs microactivity properties. To test this hypothesis, we chose vanadium as a contaminate because this metal is capable of irreversibly destroying the FCC crystallinity as well as it microporous structure. In addition, we wanted to examine the extent to which steaming affects the vanadium contaminated FCC. Using the AFM, we measured the surface roughness of FCCs, before and after contamination and after steaming.We obtained our FCC (GRZ-1) from Davison. The FCC is generated so that it contains and estimated 35% rare earth exchaged zeolite Y, 50% kaolin and 15% binder.


2003 ◽  
Vol 780 ◽  
Author(s):  
C. Essary ◽  
V. Craciun ◽  
J. M. Howard ◽  
R. K. Singh

AbstractHf metal thin films were deposited on Si substrates using a pulsed laser deposition technique in vacuum and in ammonia ambients. The films were then oxidized at 400 °C in 300 Torr of O2. Half the samples were oxidized in the presence of ultraviolet (UV) radiation from a Hg lamp array. X-ray photoelectron spectroscopy, atomic force microscopy, and grazing angle X-ray diffraction were used to compare the crystallinity, roughness, and composition of the films. It has been found that UV radiation causes roughening of the films and also promotes crystallization at lower temperatures.Furthermore, increased silicon oxidation at the interface was noted with the UVirradiated samples and was shown to be in the form of a mixed layer using angle-resolved X-ray photoelectron spectroscopy. Incorporation of nitrogen into the film reduces the oxidation of the silicon interface.


Sign in / Sign up

Export Citation Format

Share Document