Inspection and Manipulation of Ferroelectrics on the Nanometer Scale

1999 ◽  
Vol 574 ◽  
Author(s):  
L. M. Eng

AbstractThe increasing interest in scanning probe instruments (SPM) stems from the outstanding possibilities in measuring electric, magnetic, optical, and structural properties of surfaces and surface layers down to the molecular and atomic scale. For the inspection of ferroelectric materials both the scanning force microscope (SFM) and the scanning near-field optical microscope (SNOM) are promising techniques revealing information on the polarization vector and the electric field induced stress within a crystal. Polarization sensitive modes are discussed as is friction force microscopy, dynamic force microscopy (DFM) and voltage modulated SFM. From these measurements, 180° domain walls (c-domains) are resolved down to 4 nm, while 3-dimensional polarization mapping in ferroelectric BaTiO3 ceramics reveals a 25 nm resolution. On the other hand, non-contact DFM measurements in ultra-high vacuum are able to resolve ferroelectric surfaces down to the atomic scale. Then also the chemical heterogeneity at the sample surface is differentiated from ferroelectric domains down to a 5 nm lateral resolution, taking advantage of the short range chemical forces. SNOM in contrast probes the optical properties of ferroelectric crystals both in transmission and reflection. Here image contrast arises from changes in the refractive index between different domains as well as at domain walls. In addition, SPM instruments are used for the local modification of ferroic samples by applying a relatively high voltage pulse to the SPM tip. Domains with diameters down to 30 nm are thus created with the size depending on both the switching and material parameters.

2010 ◽  
Vol 21 (12) ◽  
pp. 125501 ◽  
Author(s):  
Jannis Lübbe ◽  
Lutz Tröger ◽  
Stefan Torbrügge ◽  
Ralf Bechstein ◽  
Christoph Richter ◽  
...  

2013 ◽  
Vol 24 (5) ◽  
pp. 055702 ◽  
Author(s):  
Shigeki Kawai ◽  
Carlos M Pina ◽  
Alexander Bubendorf ◽  
Gregor Fessler ◽  
Thilo Glatzel ◽  
...  

2004 ◽  
Vol 838 ◽  
Author(s):  
Peter M. Hoffmann ◽  
Shivprasad Patil ◽  
George Matei ◽  
Atay Tanulku ◽  
Ralph Grimble ◽  
...  

ABSTRACTDynamic Atomic Force Microscopy (AFM) is typically performed at amplitudes that are quite large compared to the measured interaction range. This complicates the data interpretation as measurements become highly non-linear. A new dynamic AFM technique in which ultra-small amplitudes are used (as low as 0.15 Angstrom) is able to linearize measurements of nanomechanical phenomena in ultra-high vacuum (UHV) and in liquids. Using this new technique we have measured single atom bonding, atomic-scale dissipation and molecular ordering in liquid layers, including water.


1998 ◽  
Vol 6 (8) ◽  
pp. 12-15
Author(s):  
Huddee J. Ho

A major goal of Atomic Force Microscopy (AFM) is to achieve nanometer resolution on surface topography, Vibrating cantilever mode (VCM) is an important configuration of an AFU instrument, It was proposed in the first AFM paper.VCM in ultra-high vacuum (UHV) results in true AFM atomic resolution, which reveals atomic scale surface defects such as a single missing atom in a lattice. However, the VCM operation in air has many difficulties due to the surface contamination on the sample and the AFM tip. The most popular operation modes of the VCM are the non-contact mode and the Tapping mode. Both of these have limited lateral resolution in air.


Author(s):  
Wenwu Cao

Domain structures play a key role in determining the physical properties of ferroelectric materials. The formation of these ferroelectric domains and domain walls are determined by the intrinsic nonlinearity and the nonlocal coupling of the polarization. Analogous to soliton excitations, domain walls can have high mobility when the domain wall energy is high. The domain wall can be describes by a continuum theory owning to the long range nature of the dipole-dipole interactions in ferroelectrics. The simplest form for the Landau energy is the so called ϕ model which can be used to describe a second order phase transition from a cubic prototype,where Pi (i =1, 2, 3) are the components of polarization vector, α's are the linear and nonlinear dielectric constants. In order to take into account the nonlocal coupling, a gradient energy should be included, for cubic symmetry the gradient energy is given by,


2012 ◽  
Vol 1455 ◽  
Author(s):  
Oliver Ochedowski ◽  
Benedict Kleine Bußmann ◽  
Marika Schleberger

ABSTRACTWe have employed atomic force and Kelvin-Probe force microscopy to study graphene sheets exfoliated on TiO2 under the influence of local heating achieved by laser irradiation. Exfoliation and irradiation took place under ambient conditions, the measurements were performed in ultra high vacuum. We show that after irradiation times of 6 min, an increase of the surface potential is observed which indicates a decrease of p-type carrier concentration. We attribute this effect to the removal of adsorbates like water and oxygen. After irradiation times of 12 min our topography images reveal severe structural modifications of graphene. These resemble the nanocrystallite network which form on graphene/SiO2 but after much longer irradiation times. From our results we propose that short laser heating at moderate powers might offer a way to clean graphene without inducing unwanted structural modifications.


Holzforschung ◽  
2007 ◽  
Vol 61 (5) ◽  
pp. 523-527 ◽  
Author(s):  
Lothar Klarhöfer ◽  
Florian Voigts ◽  
Dominik Schwendt ◽  
Burkhard Roos ◽  
Wolfgang Viöl ◽  
...  

Abstract Metastable induced electron spectroscopy (MIES), ultraviolet photoelectron spectroscopy (UPS), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) were applied to study the interaction of Ti metal atoms with spruce surfaces. Spruce surfaces were produced by planing splints from a spruce bar. Ti atoms were adsorbed from a metal evaporator under ultra-high vacuum conditions. The amount adsorbed corresponds to 10 monolayer equivalents. Strong interactions between the spruce surface and metals atoms occurred. Impinging Ti atoms were oxidized by the spruce surface. No Ti agglomeration or particle formation was observed. The surface was smoothed by the Ti applied and was completely covered by a titanium oxide film.


Sign in / Sign up

Export Citation Format

Share Document