Synthesis and Characterization of Mn Doped CdS Quantum Dots from a Single Source Precursor

1999 ◽  
Vol 581 ◽  
Author(s):  
M. Azad Malik ◽  
Paul O'Brien ◽  
N. Revaprasadu

ABSTRACTCdS and Mn-doped CdS capped with TOPO (tri-n-octylphosphineoxide) have been prepared by a single source route using bis(methylhexyldithiocarbamato)cadmium(II) and manganese dichloride as precursors. The nanoparticles obtained show quantum size effects in their optical spectra with the CdS nanoparticles exhibiting near band-edge luminescence. The PL spectrum of the doped CdS nanoparticles have an emission maximum at 585 nm attributed to the 4T1-6A1 electronic transition of Mn in a tetrahedral site. However the PL spectrum changes over time (weeks) and gave a deep trap emission. The Selected Area Electron Diffraction (SAED) and X-ray diffraction (XRD) pattern show both CdS and the Mn doped CdS particles to be of the hexagonal phase. Transmission Electron Microscopy (TEM) and High Resolution TEM show well-defined images of nanosize particles with clear lattice fringes. ESR spectra and ICP results confirm the presence of Mn in the CdS nanoparticles.

1998 ◽  
Vol 536 ◽  
Author(s):  
M. Azad Malik ◽  
Paul O’Brien ◽  
N. Revaprasadu

AbstractNanoparticles of ZnS and Mn-doped ZnS capped with TOPO (tri-n-octylphosphine oxide) and close to mono-dispersed have been prepared by a single source route using bis(diethyldithiocarbamato) zinc(II) as a precursor. The nanoparticles obtained show quantum size effects in their optical spectra and ZnS nanoparticles exhibit near band-edge luminescence. Clear difference in photoluminescence results between ZnS and ZnS:Mn samples. Changes in Mn-doping levels are shown by the changes in photoluminescence intensity. The most intense photoluminescence was observed for 1% and the least intense for 5% doping level. ESR spectra and ICP results confirm the presence of Mn in ZnS quantum dots and also correspond to the amount of Mn in each ZnS:Mn sample.The Selected Area Electron Diffraction (SAED), X-ray diffraction (XRD) pattern and Transmission Electron Microscopy (TEM) show the material to be of the hexagonal phase. The crystallinity of the material was also evident from High Resolution Transmission Electron Microscopy (HRTEM) which gave well-defined images of nanosize particles with clear lattice fringes.


2011 ◽  
Vol 284-286 ◽  
pp. 667-670
Author(s):  
Zhen Ni Du ◽  
Zhi You Xu ◽  
Yong Cai Zhang ◽  
Ming Zhang

The synthesis of hexagonal phase Mn-doped CdS (Cd1-xMnxS) nanorods was achieved by solvothermal treatment of a class of easily obtained, air-stable single-source molecular precursors (cadmium manganese diethyldithiocarbamates, Cd1-xMnx-(DDTC)2) in ethylenediamine at 180 °C for 12 h. The structures and compositions of the as-synthesized products were characterized by X-ray diffraction, energy dispersive X-ray spectroscopy and transmission electron microscopy.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
D. Venkatesan ◽  
D. Deepan ◽  
J. Ramkumar ◽  
S. Moorthy Babu ◽  
R. Dhanasekaran

CdS nanoparticles and thin films are well known for their excellent semiconducting properties. When transition metal ions are doped into the CdS, it exhibits magnetic properties in addition to semiconducting properties and they are termed as dilute magnetic semiconductors (DMSs). In this paper, we discuss the preparation of sodium bis(2-ethylhexyl) sulfonsuccinate (AOT) capped CdS nanoparticles and thin films doped with magnetic impurity Mn. Sodium bis(2-ethulexyl) sulfonsuccinate (AOT), capping agent promotes the uniform formation of nanoparticles. Optical characterizations are made using the UV-Vis spectrometer, PL, and FTIR. XRD shows the hexagonal structure of the CdS. SEM images and EDS measurements were made for the thin films. EPR shows the clear hyperfine lines corresponding to Mn2+ion in the CdS nanoparticles.


2020 ◽  
Vol 20 (9) ◽  
pp. 5885-5895 ◽  
Author(s):  
Himanshu Rajbongshi ◽  
Dipjyoti Kalita

Efficient removal of organic pollutants from waste water by nanostructured photocatalysts has become an emerging research due to its importance in environmental remediation. Herein, CdS nanostructures with different morphologies i.e., spherical, nanopetal and rose-like have been synthesized by wet chemical method using TEA as a structure directing agent. The morphology, crystal structure, composition, surface area and optical properties of the nanostructures are investigated by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDX), Brunauer-Emment-Teller (BET) analyser, Ultraviolet-Visible (UV-Vis) absorption spectroscopy and Photoluminescence (PL) spectroscopy. XRD patterns indicate the existence of hexagonal phase of CdS in all the three morphologies. The SEM images confirm the morphological transformation of spherical CdS nanoparticles (NPs) to nanopetal and rose-like morphology with the increase in concentration of TEA in the synthesis process. UV-visible absorption spectra show that rose-like CdS nanostructure exhibits red-shift of absorption wavelength compared to spherical and nanopetal CdS nanostructures. The increase in intensity of PL peak of rose-like CdS at 576.6 nm compared to that of spherical and nanopetal CdS, confirms the presence of more S vacancies or defect states. The BET specific surface areas of spherical, nanopetal and rose-like CdS nanostructures are determined to be 4.18, 6.64 and 8.93 m2/g, respectively. The EIS Nyquist plot confirms the higher electron transfer efficiency of rose-like CdS than that of spherical and nanopetal CdS. The photocatalytic activity of these three nanostructures are evaluated for the degradation of methylene blue (MB) dye in water solution under sunlight irradiation. Among the three structures, rose-like CdS nanostructure shows highest photocatalytic efficiency (96.5%) under sunlight irradiation within 120 min of sunlight irradiation. Antibacterial activity of the synthesized CdS nanostructures is performed against two Gram-positive and Gram-negative bacteria and rose-like CdS shows more activity against both types of bacteria than that of spherical and nanopetal CdS.


2010 ◽  
Vol 663-665 ◽  
pp. 100-103
Author(s):  
Zhen Ni Du ◽  
Yong Cai Zhang ◽  
Zhi You Xu ◽  
Ming Zhang

The synthesis of hexagonal phase Zn1-xMnxS (x = 0–0.05) nanorods was achieved by hydrothermal treatment of zinc manganese diethyldithiocarbamates (Zn1-xMnx-(DDTC)2, x=0–0.05) in 40 mass % hydrate hydrazine aqueous solution at 180 °C for 12 h. The structure, composition and optical property of the obtained products were characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, transmission electron microscopy and UV-vis diffuse reflectance spectra.


2012 ◽  
Vol 39 (2) ◽  
pp. 645-657 ◽  
Author(s):  
Ruby Chauhan ◽  
Ashavani Kumar ◽  
Ram Pal Chaudhary
Keyword(s):  

2008 ◽  
Vol 8 (9) ◽  
pp. 4500-4505 ◽  
Author(s):  
Gotluru Kedarnath ◽  
Sandip Dey ◽  
Vimal K. Jain ◽  
Gautam K. Dey ◽  
Ramakant M. Kadam

The Reaction of [HgCl2(tmeda)] with NaTeCH2CH2NMe2 gave a mercury tellurolate, [Hg(TeCH2CH2·NMe2)2] (1) as a yellow crystalline solid, which was characterized by elemental analysis, UV-vis, mass and NMR (1H, 13C, 125Te, 199Hg) spectroscopy. Thermolysis of 1 in hexadecylamine (HDA) at 90 °C in the absence and presence of Mn(OAc)2·4H2O gave undoped and Mn-doped HgTe nanoparticles which were characterized by XRD, EDAX, TEM, EPR and magnetic measurements. These particles could be synthesized with mean particle size of 6–7 nm (from TEM). Manganese substitution at Hg site in HgTe lead to a linear decrease in lattice parameter with increasing concentration of Mn. Magnetization measurements showed ferromagnetic ordering at room temperature with very small coercive field (Hc, 50 Oe) for Hg0.973Mn0.027 Te sample. This sample also exhibited distinct ferromagnetic resonance (FMR) in the EPR spectrum.


Sign in / Sign up

Export Citation Format

Share Document